Description of how each toxicant trigger value was derived

Michael St John Warne Ecotoxicology Section NSW Environment Protection Authority

This document should be cited as follows: Warne, MStJ. 2000. *Description of how each toxicant trigger value was derived*. Supporting information for the Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy Paper No. 4, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra.

Summary of information provided

The following material provides all the necessary information to determine how each toxicant trigger value (TV) was calculated. This is done for each toxicant both for the freshwater and marine environment. The order in which the chemicals appear in this document is the same as that in the tables listing the trigger values in the ANZECC and ARMCANZ water quality guidelines (ANZECC & ARMCANZ 2000). Unless otherwise stated all the TVs are expressed in terms of μ g/L.

Within the section on each toxicant the following information is provided. Firstly it states whether the calculations apply for the freshwater or marine environments. Secondly, which grade of reliability the TVs fail to meet and then the grade of reliability that was actually calculated. High reliability, moderate reliability and low reliability were abbreviated to HR, MR and LR respectively. Within the low reliability TVs there are two classes — the interim which is abbreviated as LR (interim) TV and the environmental concern level which is abbreviated as LR (ECL) TV. Immediately following this is the data that were used to calculate the TV or statements about the amount and taxonomic group for which toxicity data were available. What follows this depends on the method used to calculate the TV.

If the Burr III statistical distribution method was used then the next information is the results from these calculations. These state the concentration that should protect 99, 95, 90 and 80% of species in the environment with 50% confidence, which are abbreviated to HC1 50%, HC5 50%, HC10 50% and HC10 50% respectively. This may be followed by some text if the TV is not to be the HC5 50%. This text explains why another level of protection was adopted and what the TV is. Finally, a statement is made indicating whether the TVs were rounded off and if so what the TVs are.

If low reliability TVs were derived then the exact type of LR TV will be stated and how the TV was calculated will be shown. This is followed by the following statement 'The other levels of protection could not be calculated as the TV was derived using the AF method'. This is done because it is not possible to calculate different levels of protection for these TVs (as could be done for those derived using the Burr type III statistical method). If the TVs were rounded off a statement is made and the rounded off TV is reported.

Aluminium Freshwater (pH > 6.5) Fails HR MR Calculations

1253.57 599	9212.49 3600)	92086.92 512.05	8355.22	55500	35000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	219.23 439.97 673.86 1203.77	,			

NOTE: Because this TV is derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all combined species is 8.17.

MR TV = $439.97 \div 8.17 = 53.85 = 54 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
26.83	53.85	82.48	147.34

These were rounded off to

(pH < 6.5) Fails HR and MR Interim Calculation

Interim TV	=	lowest value ÷ AF or ACR
	=	15 ÷ 20
	=	0.75 μg/L
	~	0.8 μg/L

An AF of 20 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine

There were only chronic toxicity data for 1 species. Therefore a HR TV could not be derived.

There were only acute toxicity data for 6 species belonging to 3 taxonomic groups (crustacea, annelida and mollusca). Therefore, a MR TV could not be derived.

When the acute and chronic toxicity data were combined there were data for 7 species belonging to the same 3 taxonomic groups as the acute data. Therefore, an interim TV could not be derived. Only an ECL could be derived.

LR (ECL) TV	=	lowest value ÷ AF
	=	$97 \div 200$
	=	0.485
	~	0.5 μg/L

An AF of 200 was used because the use of an AF of 1000 was considered excessive for such a commonly found element.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Antimony Freshwater Fails HR and MR

There were toxicity data for 3 species which belonged to 3 taxonomic groups (fish, crustacea and annelida).

Therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	9000 μg/L ÷ 1000
	=	9 μg/L

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine

There were only toxicity data for three marine species which belonged to two different taxonomic groups — fish and crustacea.

Therefore only a LR (ECL) TV could be derived.

The lowest value was not used to derive the ECL as it was markedly different from other values for the same species (i.e. 53.4 compared to 267 000 μ g/L). Therefore the next lowest value was used.

lue ÷ 1000
g/L ÷ 1000

The other levels of protection could not be calculated as the TV was derived using the AF method.

Arsenic (III) Freshwater HR Calculations

890 961 15.74	6751.14 8420	Ļ	955 417.45	290.81 4284.89	961 961	9250.92 3823
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1.05 24.21 93.52 361.21				
TV (Burr HC5 5	0%)	= 24				

The other levels of protection are:

99%	95%	90%	80%
1.05	24.21	93.52	361.21
These were	rounded off to		

1	24	94	360

Marine

There were no screened marine toxicity data. However, there were unscreened USEPA data for 12 species — the lowest value being 232 μ g/L. Even though there were sufficient data to derive a MR TV a LR (interim) was derived because the data were unscreened.

LR (interim) TV	=	lowest value ÷ 100
	=	232 μg/L ÷ 100
	=	2.32 µg/L
	~	2.3 μg/L

Arsenic (V) Freshwater HR Calculations

22.63 973	510.84 973	973 9.80	973 7843.60	973 15 886
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.76 12.54 42.08 143.28		
TV (Burr HC5 5	0%)	$= 12.45 = 12.5 \ \mu g/L$		

The other levels of protection are:

99%	95%	90%	80%
0.76	12.54	42.08	143.28
These were round	ded off to		
0.8	13	42	140 µg/L

Marinewater Fails HR and MR

The highest level of TV that could be derived was the LR (ECL) TV. There were only pH data for 2 of the 10 data. But it is marine water — the stated pH range is 6.7-8.2.

LR (ECL) TV = lowest value $\div 200$ = 893 $\div 200$ = 4.465 $\approx 4.5 \ \mu g/L$

An AF of 200 was used as the lowest toxicity value was chronic.

Bismuth Freshwater Fails HR and MR

There were only three toxicity data and these were insufficient to derive an interim (LR) TV. Only a LR (ECL) TV could be derived. However, none of the data recorded the pH.

LR (ECL) TV = lowest value \div 1000 = 662 \div 1000 = 0.7

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine water

There were no marine toxicity data. Therefore no marine TV could be derived.

Boron Freshwater HR Calculations

The data used in the calculations were:

6945.5 4993.38	357.77 32244.0		4651.02 22600	4665 1323.52	1000	10940
HC1 50% HC5 50% HC10 50%	= =	93.60 367.5 682.4				
HC20 50%	=	1335				
TV (Burr HC5 5	50%)	=	370 µg/L			
The other levels	of protect	ion are:				
99%	95%		90%	80%		
93.6	367.5		682.4	1335		
These were rour	nded off to					
90	370		680	1300 µg/L		

Marine water

There were no toxicity data for marine species. Therefore no TV could be derived.

Cadmium Freshwater HR Calculations

The data used in the calculations were:

10.22 121.68 474 5.72	3.2 3.31 112 243.8	0.38 8.2 250.36 766.88	0.08 23.21 0.63	1.65 0.83 20.72	2.46 0.52 0.49	
HC1 50% HC5 50% HC10 50% HC20 50%	$\begin{array}{rcl} = & 0.0 \\ = & 0.1 \\ = & 0.3 \\ = & 0.8 \end{array}$	9 5				
HR TV (Burr H	C5 50%) =	0.19 =	$0.2 \ \mu g/L$			
The other levels	of protection	are:				
99%	95%	90%	80%			
0.064	0.19	0.35	0.81			
These were rounded off to						
0.06	0.2	0.4	0.8 µg/L			

Marine HR Calculations

The data used in the calculations were:

3025.23 168.71 138.56 430 1069.63 228.07 7.05 3058.10 15.60	10 5.7 437.95 262 200 3200 140 143.6 12393.55	140 20 322.69 340 64.81 92.46 412.55 4472.14 14.04	1040 62 4400 123.64 2.75 1280 29.39 98 2529.46	132.37 240 22 400 2.96 68.99 260 332.76
HC1 50% HC5 50% HC10 50% HC20 50%	$\begin{array}{rcl} = & 0.71 \\ = & 5.51 \\ = & 13.71 \\ = & 36.38 \end{array}$			

HR TV (Burr HC1 50%) = $0.71 = 0.7 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because Cadmium can bioaccumulate in marine systems and in-order to provide adequate protection to marine crustaceans that showed low chronic toxicity.

The other levels of protection are:

99%	95%	90%	80%
0.71	5.51	13.71	36.38
These were roun	ded off to		
0.7	5.5	14	36 µg/L

Chromium (III) Freshwater Fails HR and MR

There were only chronic toxicity data for 6 species that belong to 3 taxonomic groups (fish, crustacea and amphibia). Therefore, a HR TV can not be derived.

There were only acute toxicity data for species that belong to 2 taxonomic groups (fish and crustacea). Therefore, a MR TV can not be derived.

There is in total, toxicity data for 3 taxonomic groups (fish, crustacea and amphibia) therefore, an LR (interim) TV could not be derived. However, there was an unscreened chronic toxicity value to a freshwater alga reported by the USEPA of 397 μ g/L. Using this value allowed an LR (interim) TV to be derived.

LR (interim) TV = lowest value $\div 20$ = 66.2 $\div 20$ = 3.31 \approx 3.3 µg/L

An AF of 20 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine MR Calculations

The data used in the calculations were:

19270	53000	10300	2598.08	100000

Because toxicity data were limited to less than eight species, the Burr Type III distribution was applied with caution (as per the directions in the BurrliOZ software section of the 'TOX-Read Me' File on the CD-ROM and Internet site). The fit of the log-logistic and the selected Burr Type III distributions to the data were compared. This showed that the log-logistic distribution fitted the data better than the selected Burr Type III distribution. Therefore, the Trigger Value and other levels of protection were calculated using the log-logistic distribution.

HC1 50%	=	597.37
HC5 50%	=	2125.69
HC10 50%	=	3770.39
HC20 50%	=	7028.75

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 77.58.

MR TV = $2125.70 \div 77.58 = 27.4 = 27 \ \mu g/L$

The other levels of protection are:

99%	95%	90%	80%		
7.7	27.39	48.60	90.60		
These were rounded off to					
8.0	27	48.6	90.6 µg/L		

Chromium (VI) Freshwater HR Calculations

The data used in the calculations were:

183.45 4.733 30 2 250.9	1060 1000 1 729.50 2 537.61	1000 49.506 63.82 85.24	28 002.05 32.53 1182.6 0.102	5 744.56 19 000 208.13		
HC1 50% HC5 50% HC10 50% HC20 50%	$\begin{array}{rcl} = & 0.014 \\ = & 1.0 \\ = & 6.24 \\ = & 39.21 \end{array}$					
TV (Burr HC5 5	0%) = 1.0					
The other levels	of protection are:					
99% 0.014	95% 1	90% 6.24	80% 39.21			
These were roun	ded off to					
0.01	1	6	40 µg/L			
Marine HR Calculations						
The data used in	the calculations v	vere:				
2 000 262.39 81.70 8 800 5 540 1 174.07	12.50 770.06 2 902.71 9 998.74 728 1456 9.55	200 1267.02 187.2 1600 1 130.94 2501.2 3 123.20	4 3 346.64 94.57 705.72 140 1 200 916.55	56 39.77 4.74 2 000 176.64 478.48 1 993.31		

HC1 50%	=	0.14
HC5 50%	=	4.36
HC10 50%	=	19.32

195.97

HC20 50% HR TV (Burr H	= C5 50%)	85.53 =	4.36	=	4.4 μg/L		
The other levels	of protec	tion are:					
99% 0.14		5% .36		90% 19.32		80% 85.53	
These were rour	nded off to)					
0.14	4	.4		20		85 μg/L	
Cobalt Freshwater Fails HR MR Calcular	tions						
The data used to	derive th	e TV wei	re:				
522	2475.06	Ì	612872		80909.83		1000

522 15500 32000	2475. 8800	06	612872 10200	80909.83 102000	4000 10002.31	2478.38 12000
HC1 50%	=	306.7				
HC5 50%	=	920.5				
HC10 50%	=	1599				
HC20 50%	=	3085				

2470 20

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR. The resulting TV did not provide adequate protection to the species for which chronic toxicity data were available.

Therefore the TV was based on the HC1 50% value. However, there were chronic toxicity values which were considerably below the suggested TV. This was particularly the case for *Daphnia magna* which is an important zooplankton species.

Therefore, in this case a LR (interim) TV was derived. An AF of 2 rather than the default value of 10 was used as cobalt is an essential element.

LR (interim) TV	=	lowest value ÷ AF
	=	$2.8 \div 2$
	=	1.4 µg/L

Lower levels of protection could not be calculated as the TV was derived using the AF method.

Marine HR Calculations

45400 9.08	9080 3103.03		60 10500	64.21	18800
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.0047 1.254 13.88 153.7			

TV (Burr HC5 5	0%) =	1.25 µg/L					
The other levels	The other levels of protection are:						
99% 0.004717	95% 1.254	90% 13.88		80% 153.7			
These were roun	These were rounded off to						
0.005	1	14		150 μg/L			
Copper Freshwater HR Calculati							
The data used to	derive the TV we	ere:					
20.34 5.73 1.7 5.33	32.86 130.83 1.68 1.64	26.4 23.2 4.2	8.24 2.56 10.18	6.50 2.12 11.04	2.98 2.48 2.22		
HC1 50% HC5 50% HC10 50% HC20 50%	$\begin{array}{rcl} = & 0.97 \\ = & 1.43 \\ = & 1.80 \\ = & 2.48 \end{array}$						
TV (Burr HC5 5	0%) =	1.43					
The other levels	of protection are:						
99% 0.9735	95% 1.427	90% 1.802		80% 2.48			
These were roun	ded off to						
1	1.4	1.8		2.5 µg/L			
Marine HR Calculations							
The data used in	The data used in the calculations were:						
2.08 5.10 30 27.5 446.68	30.2 620 32 0.4	122 20 126.91 17.0	48.44 500 10.2 66.95	40 3 260 20000	6514.5 1.98 42 17.66		

0.4		17.0	
400			
=	0.20		
=	1.29		

HC10 50% = 3.04 HC20 50% 7.78 =

446.68

HC1 50% HC5 50%

TV (Burr HC5 50%) = 1.39 The other levels of protection are:

99% 0.2	95% 1.29	90% 3.04	80% 7.78
These were	rounded off to		
0.2	1.3	3	8 μg/L

Gallium Freshwater Fails HR and MR

There was only one acceptable piece of data and it is for a fish. Therefore, only a LR (ECL) TV could be derived.

LR (ECL) TV	=	$3510 \div 200$	(used an AF of 200 as lowest value was chronic)
	=	17.5	
	≈	18 µg/L	

An AF of 200 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine water

There was no toxicity data for marine species. Therefore no TV could be derived.

Iron

The Canadian water quality guideline was adopted for iron.

Lanthanum Freshwater

There were no screened toxicity data. There was only one unscreened datum (a 48h EC50) for *Daphnia carinata* (Barry & Meehan, unpublished). Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = $43 \div 1000$ = 0.043 $\approx 0.04 \ \mu g/L$

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no toxicity data for marine species therefore no TV could be derived.

Lead Freshwater HR Calculations

The data used in the calculation were:

67.6 5.11	5.65 28.4		11.12		27.95		27.89		19.48	
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1.02 3.36 5.62 9.44								
TV (Burr HC5 5	0%)	=	3.4 µg/I	- /						
The other levels	of prot	ection are:								
99% 1.02		95% 3.36		90% 5.62		80% 9.44				
These were roun	These were rounded off to									
1		3.4	4	5.6		9.4 µg	/L			
Marine HR Calculati	ons									
The data used to	derive	the TV we	re:							
340.25	12.02		8		25		8	891.92		622
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	2.23 4.35 6.56 11.47								
TV (Burr HC5 5	0%)	=	4.35 μg/	Ľ	=	4 µg/L				
The other levels of protection are:										
99% 2.23		95% 4.35		90% 5.56		80% 11.47				
These were roun	ded off	to								
2.2		4.4	(6.6		12 µg	g/L			

Manganese Freshwater Fails HR MR Calculations

The data used in the calculations were:

220325.1 51000 33800	981817. 506698. 38700		21116.65 310000	38700 1040000	28000 130000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	10775 17013 22500 32915			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The only ACR for Manganese was 9.08.

MR TV = $17013 \div 9.08 = 1873.7 \approx 1900 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
1186.7	1873.7	2477.9	3625.03

These were rounded off to

1200 1900	2500	3600
-----------	------	------

Marine

There were only toxicity data for 6 species that belong to 3 taxonomic groups. The data failed the minimum data requirements for HR, MR and interim TVs.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 200
	=	16000 μg/L ÷ 200
	=	80 μg/L

An AF of 200 was used as the lowest toxicity value was chronic.

The lower values of 10 and 1500 were not used because they were (a) not reliable and (too short term) respectively and (b) converted NOEC data was not used to derive LR TVs.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Mercury Freshwater HR Calculations

The data used to derive the TV were:

12.65 29.15	71.13 2.569		34.69 48.86	1.04	12
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.056 0.65 1.89 5.45			
TV (Burr HC1	50%)	=	0.056 μg/L	=	0.06 µg/L

The HC1 50% was adopted for slight to moderately modified ecosystem protection because Mercury bioaccumulates.

The other levels of protection are:

99% 0.056	95% 0.65	90% 1.89	80% 5.45
These were rounded of	ff to		
0.06	0.6	1.9	5.4

Marine HR Calculations

4.11 2 2.94	4 1.34 59.53		4 4.1134 0.8	20 4.1134 0.36	2.4 8.53 0.12
140 4.11	7.82 88		12	840	10
HC1 50% HC5 50%	=	0.10 0.36			
HC10 50% HC20 50%	=	0.66 1.36			

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

TV (Burr HC1 50%) = $0.10 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because Mercury bioaccumulates.

The other levels of protection are:

99% 0.1	95% 0.36	90% 0.66	80% 1.36
These were rounded of	f to		
0.1	0.4	0.7	1.4 µg/L

Molybdenum Freshwater Fails HR and MR

There were insufficient data (4 species belonging to 3 taxonomic groups) to derive a HR or MR TV. Only an LR (interim) TV could be derived.

LR (Interim) TV = lowest value $\div 20$ = 670 $\div 20$ = 34 ug/L

An AF of 20 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine

There were only toxicity data for 2 species that belong to 1 taxonomic group.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 200 = 4500 µg/L \div 200 = 22.5 \approx 23 µg/L

An AF of 200 was used as Molybdenum is an essential element.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Nickel Freshwater HR Calculations

The data used in the calculation were:

31.4	93.39		13.67		39.46	151.4	13.48
HC1 50%	=	7.88					
HC5 50%	=	10.89					
HC10 50%	=	13.27					
HC20 50%	=	17.36					
HR TV (Burr H	C5 50%)	=	10.89	=	11 μg/L		

The other levels of protection are:

99% 7.88	95% 10.89	90% 13.27	80% 17.36
These were rounded	off to		
8	11	13	17 µg/L

Marine HR Calculations

The data used to derive the TV were:

2456	2600	1702.14	240	30000
22636.09	1140	22400	3200	1540
5000	6000	160	141	50

The values of 141 and 50 are not in the database. These were obtained quite late in the derivation process and we do not have all the details required for the database. However, we know sufficient to class them both as reliable data. The value of 141 μ g/L is a chronic toxicity value for *Mysidopis bahia* obtained from the USEPA (1986) and background data. The value of 50 was obtained by dividing a chronic EC50 (population growth) value of 250 μ g/L to *Nitzschia closterium* (Florence et al. 1994) by 5 to obtain a converted NOEC value.

HC1 50%	=	6.74
HC5 50%	=	71.25
HC10 50%	=	198.12
HC20 50%	=	562.97

HR TV (Burr HC1 50%) = $70 \ \mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the HC5 50% was not considered to offer sufficient protection to the most sensitive species for which there were acute toxicity data (*P. pelagicus* and a mysid).

The other levels of protection are:

99% 6 74	95% 71.25	90% 198.1	80% 562.9
These were roun		198.1	302.9
7	70	200	560 µg/L

Selenium (Total ie. Se IV & Se VI) Freshwater HR Calculations

The data used in the calculation were:

276.33	69.91	14	120	16500.62
--------	-------	----	-----	----------

NOTE: The pH of the test solutions in which these tests were conducted varied from 7.3 to 7.98 and therefore was within the acceptable pH range of 6.5-9. The value of 16 595.87 is a noticeable outlier.

However, if this value is removed then the data does not meet the minimum data requirements of the statistical extrapolation method.

HC1 50%	=	5.35
HC5 50%	=	11.31
HC10 50%	=	17.89
HC20 50%	=	33.86

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. HR TV (Burr HC1 50%) = $5.35 = 5.4 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because Selenium bioaccumulates.

The other levels of protection are:

99% 5.35	95% 11.31	90% 17.89	80% 33.86
These were rou	nded off to		
5.4	11.3	18	34 µg/L

Marine

There were only toxicity data for 3 different taxonomic groups (fish, crustacea and mollusca) and there were no algae. However, while the alga did not pass the screening process it was used in this case so that a MR (interim) TV could be derived. This was done as the data does give an indication of the sensitivity of alga and it did not drive the size of the TV — it only modifies the size of the AF.

LR (interim) TV = lowest value \div 100 = 255 \div 100 = 2.55 \approx 3 µg/L

The other levels of protection could not be calculated as the TV was derived using the AF method.

Selenium (IV) Freshwater

There were only toxicity data for 6 species of fish. Therefore only an LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 200 = 2250 \div 200 = 11.25 \approx 11 µg/L

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine water

There were no screened toxicity data for marine species. There was however, an un-screened 72 h EC_{50} figure > 2 mg/L reported for *Nitzschia closterium* (Florence et al. 1994). Because it is a "greater than" toxicity value it could not be used to derive a TV. Therefore no TV could be derived.

Silver Freshwater HR Calculation

The data used in the calculation were:

48.00 22	0.16 0.079		0.44 280.0		0.24	5.84
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.020 0.054 0.098 0.22				
TV (Burr HC5 5	0%)	=	0.06 µ	g/L		
The other levels	of prote	ection are:				
99% 0.020		95% 0.054		90% 0.098		80% 0.22
These were roun	ded off	`to				
0.02		0.05		0.1		0.2 µg/L
Marine HR Calculations						
The data used to	derive	the TV we	re:			
1.55 6.0	5.0 34.41		1.6 6.0		6.48	14.09
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.76 1.35 1.81 2.59				
TV (Burr HC5 5	0%)	=	1.35	=	1.4 µg/L	
The other levels	The other levels of protection are:					
99% 0.76		95% 1.35		90% 1.81		80% 2.59
These were roun	ded off	`to				
0.8		1.4		1.8		2.6 µg/L

Thallium Freshwater Fails HR and MR

An LR (interim) TV could be derived if the algae toxicity data was accepted. The problem is that the pH of the alga data ranged from 2.2-8, which is outside the normal acceptable range. The remainder of

data had a pH range of 7.5-8.6. The alga data was accepted because although it was outside the normal pH range it gave an indication of algal sensitivity and it would not drive the TV. Therefore a LR (interim) TV could be derived.

LR (interim) TV = lowest value $\div 20$ = 0.5 $\div 20$ = 0.03 µg/L

An AF of 20 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine Fails HR and MR

There were toxicity data for 6 species that belonged to 3 taxonomic groups; fish, crustacea and diatoms. Therefore, an LR (interim) TV could be derived.

LR (interim) TV = lowest value $\div 20$ = 330 $\div 20$ = 16.5 µg/L

An AF of 20 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Tin Freshwater Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 2 species which belonged to 2 taxonomic groups (insecta and annelida).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	$3000 \ \mu g/L \ \div 1000$
	=	3 μg/L

Marine Fails HR and MR

There were chronic toxicity data for 2 species that belonged to 1 taxonomic group — diatom.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 200 = 200 \div 200 = 1 µg/L

An AF of 200 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

There was however, a number of unscreened toxicity data available from Mance et al. (1988). These data indicate that there were no toxic effects on crustaceans and fish at concentrations up to the

maximum aqueous solubility. Mance et al. (1988) recommended a TV of 0.25 times the aqueous solubility of inorganic tin in seawater (ie 10 μ g/L). This value is consistent with the LR (ECL) TV derived in this study and was therefore adopted.

LR TV = $10 \,\mu g/L$

Tributyltin Freshwater Fails HR and MR

There were toxicity data for 3 species which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	2.2 μg/L ÷ 1000
	=	0.0022
	=	0.002 μg/L

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine HR Calculations

The data used to derive the TV were:

0.6 1.35	0.0042 0.44		0.13	0.043	0.368	11.37
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.0004 0.0055 0.017 0.054				
HR TV (Burr HO	C5 50%)	=	0.0055	=	0.006 µg/L	
The other levels	of protec	tion are:				
99% 0.0004		5% 0.0055	90% 0.017		80% 0.054	
These were rounded off to						
0.0004	(0.006	0.02		0.05 µg/L	

Uranium Freshwater Fails HR and MR

There were only chronic toxicity data for 4 species which belonged to 3 taxonomic groups (fish, crustacea and hydra). Therefore a HR TV could not be derived.

There were only acute toxicity data for 8 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only an LR (interim) TV could be derived.

LR (Interim) TV = lowest value $\div 20$ = 10 µg/L $\div 20$ = 0.5 µg/L An AF of 20 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine

There were no toxicity data for marine species. Therefore no TV could be derived.

Vanadium Freshwater Fails HR and MR

There were only toxicity data for 7 species that belonged to 3 taxonomic groups. The alga data were conducted at a pH between 2.2 and 8. Such data is outside the acceptable range and would normally be excluded. However, in this case the data was included as only an interim could be derived and the alga data was not the lowest and therefore would not affect the magnitude of the TV.

LR (Interim) TV = lowest value $\div 20$ = 120 $\div 20$ = 6 μ g/L

An AF of 20 was used as the lowest toxicity value was chronic.

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine HR Calculations

400	700	0	100		13000	2000	600
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	46.49 100.2 155.9 277.7					
TV (Burr HC5 5	50%)	=	100				
The other levels	of pro	tection are:					
99% 46.49		95% 100.2		90% 155.86		80% 277.7	
These were rour	nded of	f to					
50		100		160		280 µg/L	

Zinc Freshwater HR Calculations

The data used to derive the TV were:

180.4	25.30	5.52	21.04	18480	650
189.4	226.14	370.8	53.73	60.4	71.05
1182.84	102.4	65	560	108.85	253.16
1120	5				

Note that the data for *Salmo salar* were not used to derive the TV as the experiments were conducted at pH outside the acceptable pH range.

HC1 50%	=	2.35							
HC5 50%	=	7.99							
HC10 50%	=	14.82							
HC20 50%	=	31.04							
TV (Burr HC5 The other level	ŕ	= ction are:	7.99	=	8 μg/L				
99%		95%		90%		80%			
2.35		7.99		14.82					
2.55		1.99		14.02		31.04 µg/L			
These were rou	inded off	to							
2.4		8		15		31 µg/L			
Marine HR Calculations The data used in the calculation were:									
14.77	39.6		460		277.7	611.29			
15	5059.6	4	490.87	7	20	10400			
620	89.26		1480		128	520			
13	393.49)	40		2100	561.44			
UC1 500/		(70							

14.77 15 620 13	39.6 5059.6 89.26 393.49		460 490.87 1480 40	7	277.7 20 128 2100		611.29 10400 520 561.44	391.43 27465.96 46.51 65
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	6.78 14.43 22.89 42.92						
TV (Burr HC5 5	0%)	=	14.43	=	14.4 μg/L			
The other levels	of prote	ction are:						
99% 6.78		95% 14.43		90% 22.891		80% 42.92		
These were roun	ded off t	0						
7		15		23		43 µg	/L	

Ammonia Freshwater HR Calculation

The data, expressed in mg/L, used to derive the TV were:

8.81 4.88 4.4	4.79 1.35 19.77	4.	.27 .56 3.03	19.72 2.62 17.14		6.15 0.54	4.16 1.79
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.32 mg/L 0.90 mg/L 1.43 mg/L 2.32 mg/L					
TV (Burr HC5 5	0%)	= 0.	.90 mg/L	=	900	=	900µg/L
The other levels	of protec	ction are:					
99% 320	95% 900	/ 0	90% 1430		80% 2320		
These were roun	ded off t	0					
320	900		1430		2300 µ	ıg/L	

The 95% figure was considered sufficiently protective of most *slightly-moderately disturbed* systems. However, this figure may not be sufficiently protective of the freshwater clam *Sphaerium novazelandiae* and related species. If this species is significant at a site, site-specific studies or a higher protection level may be warranted.

Marine Fails HR MR Calculation

The data, expressed in mg/L, used to derive the TV were:

21402.62 77461.35 26460.07 42755.01	44895.9 25666.3 20850.1 7724.08	0 8	8779.25 103592.88 264345.15 142210.4	158046.99 33671.95 25666.3	18686.99 40260.72 105583.76	49167.96 46089.98 26069.71
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	5745 10426 13989 19750				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 11.49.

MR TV = $10426 \div 11.49 = 907.398 = 910 \,\mu g/L$

The other levels of protection are:

99% 500	95% 907.398	90% 1217.493	80% 1718.885
These were rounded of	'f to		
500	910	1200	1700 µg/L

Chlorine (expressed as chlorine — µg Cl/L) **Freshwater Fails HR MR Calculations**

The data used in the calculation were:

131.04	580	390	787.49	351	137.56
23.28	28.30	77.47	854.17	75.90	470
1010	487.35	10459.74	7101	1070	1350
2176.44					

HC1 50%	=	4.18
HC5 50%	=	26.47
HC10 50%	=	58.94
HC20 50%	=	133.56

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 2.36.

MR TV = $26.47 \div 2.36 = 11.22 = 11 \,\mu\text{g/L}$

However, the above TV was not adopted because there were acute toxicity values of 5 & 6 for *D. magna*. Therefore, a default AF of 10 rather than the ACR of 2.36 was used to derive the TV. This is shown below.

MR TV = $26.47 \div 10 = 2.647 = 2.6 \,\mu g/L$

The other levels of protection are:

99% 0.418	95% 2.647	90% 5.894	80% 13.356
These were rounded	off to		
0.4	3	6	13 µg/L

Marine Fails HR and MR

There were only acute toxicity data for 4 different species that belonged to 2 different taxonomic groups (fish and crustacea).

Therefore, the data failed the minimum data requirements to derive a HR, MR or interim TV. Only a LR (ECL) TV could be derived. LR (ECL) TV = lowest value ÷ AF

=	$44 \div 1000$
=	$0.04 \ \mu g/L$

However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

LR TV = $26.47 \div 10 = 2.647 = 2.6 \,\mu\text{g/L}$

The other levels of protection are:

99% 0.418	95% 2.647	90% 5.894	80% 13.356
These were ro	ounded off to		
0.4	3	6	13 µg/L

Cyanide Freshwater Fails HR MR Calculations (Cyanide expressed as unionised cyanide HCN μgCN/L)

The data used to derive the TV were:

562.3	461.35		247.5	223	.3	803.74
376.49	1229.15	5	992.1	116	5.47	100.42
62.93	127.44		98.12	140	.63	60.71
100.22	107.55		40.32	98.3	3	1166.74
1241.36	64078.6	5	62400	215	3.3	821192.35
10636.2	2575.61	l	3322.23	181	21.25	1121.54
2511.82	3011.31	l	486.02	488	.68	532.15
448.69	4433.22	2	93.98	486	.24	257.31
2284.90	1743.15	5	252.7	257	.9	922.84
134.71						
HC1 50%	=	33.06				
HC5 50%	=	62.30				
HC10 50%	=	91.82				
HC20 50%	=	155.63				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 8.45.

MR TV = $62.30 \div 8.45$ (ACR) = $7.373 = 7 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
3.9124	7.3728	10.8663	18.4178

These were rounded off to

4 7 11	18 µg/L
--------	---------

Marine Fails HR MR Calculations

The data used to derive the TV were:

67.4 10424	105		6708	240.7	105.9	34666.7
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	16.04 35.90 58.77 114.93				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 8.45.

MR TV = $35.90 \div 8.45 = 4.248 = 4.2 \ \mu g/L$

The other levels of protection are:

99% 1.898	95% 4.249	90% 6.955	80% 13.601
These were round	led off to		
2	4	7	14 µg/L

Nitrate Freshwater Fails HR MR Calculations

The data used to derive the TV were:

340406.4		896847.9	7630126	5582000
14000		5998000	5799000	720085.7
733058.5		576645.9	723490.7	9000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	167.4 6855 33909 167737		

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR for this chemical.

MR TV = $6855 \div 10 = 685.5 = 685 \,\mu g/L$

The other levels of protection are:

99% 16.74	95% 685.5	90% 3390.9	80% 16773.7
These were rounded of	f to		
17	700	3400	$17~000~\mu\text{g/L}$

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 7 species that belonged to 2 taxonomic groups (fish and mollusca). Therefore, the data failed HR & MR methods. The best level of TV that could be derived was the LR (ECL) TV.

LR (ECL) TV = $2536\ 000 \div 200$ (an AF of 200 was used as nitrate is an essential element) = $12\ 680$

 $\approx \qquad 13~000~\mu\text{g/L}$

An AF of 200 was used as nitrate is an essential element.

However, the freshwater MR TV was of higher quality and was therefore adopted as a LR (interim) TV.

LR (interim) TV = 685 μ g/L

The other levels of protection are:

99%	95%	90%	80%
16.74	685.5	3390.9	16773.7
These were round	led off to		
17	700	3400	17 000 μg/L

Sulfide (expressed as undissociated sulfide) Freshwater Fails HR MR Calculations

The data used to derive the TV were:

53.57 17.88 45.62 1374.10	23.44 56.55 160.00 26.40	12.00 7 487.90 403.8	40.19 26.10 363.61 188.08	24.18 39.62 363.61 27690.23	34.80 141.23 2223.66 6009.9	25.63 1072.90 19532.13
HC1 50%	=	4 79				

HC1 3070	_	4./9
HC5 50%	=	9.63
HC10 50%	=	14.77
HC20 50%	=	26.45

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR for this chemical.

MR TV (HC5 50%) = $9.63 \div 10 = 0.963 = 0.963 \mu g/L$ The other levels of protection are:

99%	95%	90%	80%
0.479	0.963	1.477	2.645

These were rounded off to

0.5	1.0	1.5	2.6 µg/L
-----	-----	-----	----------

NOTE: However, in order to calculate a MR TV, data that used sodium sulfide had to be included. The problem with this is that in such cases the concentrations were nominal and H_2S is very volatile so the actual concentrations were probably much lower than the nominal. Therefore the toxicity data may considerably overestimate the actual concentrations that would cause the effects.

Marine

There were no chronic toxicity data for marine species and only acute data for 5 species that belonged to 3 taxonomic groups (mollusc, echinoderm, crustaceans). Therefore only a LR (ECL) could be derived. However, the freshwater TV was of higher quality that this and was therefore adopted for marine waters.

LR TV = $9.63 \div 10 = 0.963 = 0.963 \mu g/L$ The other levels of protection are:

90%	80%
1.477	2.645
	1.477

These were rounded off to

0.5
).5

Ethyl alcohol (ethanol) [CAS No. 64-17-5] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

4347413 880800	9500000 9273963.	55	15000000 25100000	13000000 11962810	13656503
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	511202 1759198 2995514 5101422			

NOTE: Because this TV was derived using acute toxicity data it is a MRI TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (crustaceans) was 1258.71.

MR TV = $1759198 \div 1258.71 = 1397.62 = 1400 \ \mu g/L$

The other levels of protection are:

99% 406.132	95% 1397.620	90% 2379.829	80% 4052.897
These were rounded off	fto		
400	1400	2400	4000

Marine Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The QSAR data used to derive the TV were:

42400000 1830000 4380000 2000	679000 35900000 891000 9600	1830000 4280000 383000	2260000 759000 1110000	2930000 708000 3400000	3310000 582000 1420000
HC1 50%	=	2445			
HC5 50%	=	31192			
HC10 50%	=	93708			
HC20 50%	=	285475			
LR (Interim)	TV =	31192 ÷10	=	3100 µg/L	

NOTE: But as this estimate of the TV was above the toxicity of the two most sensitive species (with geometric means of 2000 and 9600) the marine LR (Interim) TV was not adopted. Rather the freshwater MR TV was adopted as an LR TV.

 $LR TV = 1400 \mu g/L$

The other levels of protection are:

99%	95%	90%	80%
406.13	1398	2379	4052
These were rou	nded off to		
400	1400	2400	4000 µg/L

Ethylene glycol [CAS No. 107-21-1] Freshwater Fails HR and MR

There were only chronic toxicity data for 1 species (a fish) and acute toxicity data for 7 species that belonged to 3 taxonomic groups (fish, crustacea, amphibia)

Therefore only an LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 326 000 µg/L \div 1000 = 326 µg/L

Which was rounded up to 330 μ g/L

LR (ECL) TV = $330 \,\mu g/L$

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine Fails HR and MR

There was only acute toxicity datum for 1 species, a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	50 000 000 μg/L ÷ 1000
	=	50 000 μg/L

The other levels of protection could not be calculated as the TV was derived using the AF method.

Isopropanol (Isopropyl alcohol) [CAS No. 67-63-0] Freshwater Fails HR and MR

There were only acute toxicity data for 4 species, 2 fish, 1 insect and a protozoan.

ThereforeOnly a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	4 200 000 μg/L ÷ 1000
	=	4200 µg/L

The other levels of protection could not be calculated as the TV was derived using the AF method.

Marine Fails HR and MR

There were toxicity data for only 1 marine species, a crustacean.

ThereforeOnly a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	1 150 000 μg/L ÷ 1000
	=	1150
	~	1200 µg/L

The other levels of protection could not be calculated as the TV was derived using the AF method.

Dichloromethane [CAS No. 75-09-2] Fresh and Marinewater Fails HR and MR

LR (Interim) Calculations using QSAR derived toxicity data

HC1 50%	=	26715			
HC5 50%	=	39319			
HC10 50%	=	49810			
HC20 50%	=	68725			
LR (Interim) T	TV =	39319	÷10	=	3950 μg/L

The other levels of protection are:

99% 2671.5	95% 3931.9	90% 4981	80% 6872.5
These were roun	nded off to		
3000	4000	5000	7000 μg/L

Chloroform [CAS No. 67-66-3] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

3400 61100 166000 10300	47264.5 164000 21500 28400		550000 165000 20100 28800		93000 93900 25100 32700		41000 24900 37100	1480000 1550000 25300
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	3677 7749 11474 18609						
LR (Interim) TV	(HC1 50)%)	=	3677	÷10	=	370 μg/L	

The HC1 50% was adopted for slight to moderately modified ecosystem protection because there was a chronic toxicity value of 200 μ g/L and therefore the TV was felt to not provide adequate protection.

The other levels of protection are:

99%	95%	90%	80%
367.7	774.9	1147.4	1860.9
These were rou	nded off to		
370	770	1100	1900 μg/L

Carbon tetrachloride [CAS No. 56-23-5] Fresh and Marinewater Fails HR and MR LR (Interim) calculations using QSAR derived toxicity data

377000	22200	59700	55300	53600	22000	4440
426000	44000	5050	4710	6910	3500	5520
5930	2370	6410	4290	7080		

HC1 50%	=	1507					
HC5 50%	=	2383					
HC10 50%	=	3154					
HC20 50%	=	4619					
LR (Interim) TV The other levels	Ì	<i>,</i>	=	2383	÷ 10	=	240 µg/L
99%	9	5%		90%		80%	
150.8	2	38.3		315.4		461.9	
These were round	ded off t	0					
150	2	240		320		460 µ	ıg/L

1,2-dichloroethane [CAS No. 107-06-2] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using toxicity data derived using QSARs

The data used to derive the TV were:

29000 104000 3100000 55300	11000 281000 340000 22800		360000 295000 47100 63600		53000 324000 43900 81700		200000 206000 50300 74800	3100000 63900 105000
HC1 50% HC5 50% HC10 50% HC20 50%	= = = =	10812 19144 26420 40042	_	10144	. 10	=	1000 ug/I	
LR (Interim) TV The other levels	Ì	,	=	19144	÷ 10	=	1900 μg/L	
99% 1081.2		5% 914.4		90% 2642		80% 4004.2	2	
These were roun	ded off to	0						
1000	1	900		2600		4000	µg/L	

1,1,1-trichloroethane [CAS No. 71-55-6] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

1:7700	2: 130000	3: 1300	4: 621000	5: 31700	6: 85400
7:81700	8:81700	9: 37500	10: 8420	11:681000	12: 71300
13: 8590	14: 8010	15: 11000	16: 11200	17: 10100	18: 4060

19: 11100	20: 87	30	21:12	400			
HC1 50%	=	1320					
HC5 50%	=	2680					
HC10 50%	=	3968					
HC20 50%	=	6548					
LR (Interim) TV	(HC5 5	0%)	=	2680	÷ 10	=	270 μg/L
The other levels of protection are:							
99%	9	95%		90%		80%	
132	2	268		396.8		654.8	
These were roun	ded off t	0					
130	2	270		400		650 μ	g/L

1,1,2-trichloroethane [CAS No. 79-00-5] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

60000 48438.50 55000 170000	34000 81679.8 55000	34	54757.85 38000 96000	70000 55729.5 147000	40000 78000 320000	57000 47291.54 170000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	29723 35535 39639 45997				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 5.46.

MR TV = $35535 \div 5.46$ (ACR) = $6508.24 = 6500 \ \mu g/L$

The other levels of protection are:

90% 8.241758 7259.8	80% 89011 8424.358974
7300	8400 μg/L
	3.241758 7259.8

Marine HR Calculations

3000	10000	33000	260000	200000	200000
60000					

HC1 50%	=	144.62
HC5 50%	=	1913
HC10 50%	=	5817
HC20 50%	=	17689

HR TV = $1913 = 1900 \ \mu g/L$

140

The other levels of protection are:

99%	95%	90%	80%
144.62	1913	5817	17689
These were rounded of	f to		

5800

 $18000 \ \mu g/L$

1900

1,1,2,2-tetrachloroethane [CAS No. 79-34-5] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

46300 18200 125000	57500 15500 120000	13300 6250 121000	13200 17100 1030000	12300 14100 108000	16600 19200 2144	5100 944000	
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1995 3767 5433 8773					
LR (Interim)	TV (HC5 5	0%)	= 3767 µ	$\iota g/L \div 10 =$	376.7 μg/I	- 	
The other lev	vels of protec	ction are:					
99% 199.469	95% 376.714		90% 543.273	80% 877.284			
These were rounded off to							
200	400		500	900 µg/L			

1, 1, 2, 2, 2-pentachloroethane [CAS No. 76-01-7] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

237000	16400	44200	39500	36900	13400	2380
278000	28200	3070	2860	4510	1810	2730
360	1430	3820	2120	4150	10000	

HC1 50% HC5 50% HC10 50%	= = =	347.4 752.1 1155					
HC20 50%	=	1998					
LR (Interim) TV The other levels		<i>,</i>	=	752.1	÷ 10	=	75 µg/L
99%	9	5%		90%		80%	
34.74	7	5.21		115.5		199.8	
These were rounded off to							
30	8	0		120		200 µ	g/L

Hexachloroethane [CAS No. 67-72-1] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

1372 4737	1380 13000	1853 2700	1194 5800	1116 2796	1425 1964	3889
HC1 50%	=	826.50				
HC5 50%	=	1030				
HC10 50%	=	1179				
HC20 50%	=	1417				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The fish ACR was 2.833.

MR TV (HC1 50%) = $826.50 \div 2.833 = 291.740 = 290 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because Hexachloroethane can bioaccumulate.

The other levels of protection are:

99% 291.7402	95% 363.685	90% 416.205	80% 500.081
These were r	ounded off to		
290	360	420	500 μg/L

Marine Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

48900 62400 682	4950 6060 265	13300 581 694	10900 542 246	9410 1010 722	2530 234	334 317
HC1 50%	=	102.07				
HC5 50%	=	181.11				
HC10 50%	=	257.24				
HC20 50%	=	414.73				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $102.07 \div 10 = 10 \,\mu g/L$

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

MR TV (HC1 50%) = $826.50 \div 2.833 = 291.740 = 290 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because Hexachloroethane can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
291.740	363.685	416.205	500.081

These were rounded off to

290	360	415	500 μg/L
-----	-----	-----	----------

1,1-dichloropropane [CAS No. 78-99-9] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

33500 13900 90000	42700 11500 87500	10100 4650 88800	9790 12700 755000	9130 10800 79600	12200 14400	8310 699000
HC1 50%	=	3382				
HC5 50%	=	5183				
HC10 50%	=	6731				
HC20 50%	=	9605				
LR (Interim)	TV (HC5	50%) =	= 5200 ÷	10 =	$520 \ \mu g/L$	

99% 338.2	95% 518.3	90% 673.1	80% 960.5
These were roun	nded off to		
300	500	700	1000 μg/L

1,2-dichloropropane [CAS No. 78-87-5] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

55300 18800 6000 149000	83800 32600 133000	0	22000 22500 149000		19200 25300 149000		17900 25300 156000		22500 29000 1390000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	5822 9178 12126 17714							
LR (Interim) T	°V (HC5 50	0%)	=	9178 ÷	10	=	917.8	=	920 μg/L
The other leve	ls of protec	tion are:							
99% 582.22	95% 917.778	1	90% 1212.55	2	80% 1771.441	l			
These were roo	These were rounded off to								
600		900		1200		1800 µg	g/L		
Freshwate Fails HR ar	1,3-dichloropropane [CAS No. 142-28-9] Freshwater and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data								
The data used	to derive th	e TV we	ere:						
32600	83800 22500 149000	22000 9180 15600	2	9200 5300 390000	1790 2530 1490	0	22500 29000		8800 330000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	7173.6 10813 13900 19563							

99% 717.4	95% 1081.3	90% 1390	80% 1956.3
These were roun	ded off to		
700	1100	1400	2000 µg/L

Chloroethylene Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

165000 186000 2610	9560 19200 1040	25700 2220 2820	23900 2070 1930	23300 3020 3130	9690 1560	1980 2480
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	670.93 1058 1398 2043				
LR (Interim)	TV (HC5	50%) =	1058	÷10 =	106 µg/L	
The other lev	vels of prot	ection are:				
99%		95%	90%	80%)	
67.09		105.8	139.8	204.	3	
These were i	rounded off	to				
70		100	140	200	µg/L	

1,1-dichloroethylene [CAS No. 75-35-4] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

891000 944000 15000	39200 101000 6070	106000 12700 16700	104000 11900 15700	108000 15300 19000	55600 11800	14000 20200
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	4627 7016 9052 12804				
LR (Interim)	TV (HC5 5	(0%) =	7016	÷ 10 =	700 μg/L	

99% 462.7	95% 701.6	90% 905.2	80% 1280.4
These were rou	nded off to		
500	700	900	1300 µg/L

1, 1, 2-trichloroethylene [CAS No. 79-01-6] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

488000 541000 7840	26200 56400 3150	70600 6670 8550		66700 6230 6370	87	500 770 550	29100 5060	6290 8200
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	2168 3272 4210 5933						
Interim TV ((HC5 50%)	=	3272	÷10	=	330 µg	/L	
The other lev	vels of prote	ction are:						
99% 216.8		95% 327.2		90% 421		80% 593.3		
These were i	rounded off t	0						
220		330		400		600	ug/L	

1, 1, 2, 2-tetrachloroethylene [CAS No. 127-18-4] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

139000 165000 2070	10300 16600 816	27800 1760 2180		24400 1640 1110	2250 2680 2340		7690 963	1290 1420
HC1 50%	=	426.6						
HC5 50%	=	705.7						
HC10 50%	=	960.2						
HC20 50%	=	1460						
LR (Interim)	TV (HC5	50%)	=	705.7	÷10	=	$70 \ \mu g/L$	

99% 42.66	95% 70.57	90% 96.02	80% 146
These were roun	nded off to		
40	70	100	150 μg/L

3-Chloropropene [CAS No. 107-05-1] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

61700000 2590000 2710000 2040000	1020000 52600000 6100000 3200	2740000 6250000 1290000 4100	3370000 1100000 553000	4330000 1020000 1600000	853000
HC1 50% HC5 50% HC10 50% HC20 50%	$\begin{array}{rcl} = & 5770 \\ = & 63939 \\ = & 18015 \\ = & 50761 \end{array}$				
LR (Interim) TV	(HC5 50%)	=	63 939 ÷ 10	=	640 μg/L
The other levels	of protection are	:			
99% 577	95% 6393.9	90% 18015.7	80% 50761	1.2	
These were roun	ded off to				
600	6400	18000	50 00	0 µg/L	

However, this TV does not provide protection to a number of species with acute toxicity values of 340 and 3200 μ g/L. Therefore the assessment factor method was adopted.

LR (interim) TV	=	lowest value ÷ 100
	=	340 ÷ 100
	=	$3 \ \mu g/L$ (after rounding off)

The other levels of protection could not be calculated as the AF method was used to derive the TV.

1,3-dichloropropene [CAS No. 542-75-6] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

4 120 000 88 100 79 400 101 000	134 000 4 080 0 148 000	00	359 000 450 000 74 100	0	380 000 63 100 30 600		421 000 58 900 85 500	275 000 66 200 115 000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	26070 38488 48849 67572						
LR (Interim) TV	(HC5 50)%)	=	38488	÷10	=	3850 µg/L	
The other levels	of protec	tion are:						
99%	9	5%		90%		80%		

4884.9

However, this TV did not provide adequate protection for some species from acute exposure (with values of 90 and 240 μ g/L. Therefore the AF method was applied to experimental toxicity data (not QASR predicted values) to derive the LR TV.

6757.2

There was only sufficient experimental toxicity data (5 species that were fish and crustaceans) to derive a LR (ECL) TV for freshwater. Similarly only a LR (ECL) TV could be derived for marine water as there was experimental toxicity data for 2 species — a fish and a crustacean.

For freshwaters

2607

LR (ECL) TV	=	lowest value ÷ 1000
	=	90 ÷ 1000
	=	0.09
	~	0.1 µg/L
For marine wate	ers	
LR (ECL) TV	=	lowest value ÷ 1000
	=	790 ÷ 1000
	=	0.79
	~	0.8 μg/L

3848.8

The other levels of protection could not be calculated as the AF method was used to derive the TV.

Aniline [CAS No. 62-53-3] Freshwater HR Calculations

The data used to derive the TV were:

8667.87	15700		4	154270	94000	19000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.148 18.13 143.58 1137				

HR TV = $18.13 = 18 \,\mu g/L$

The HC5 50% figure was above chronic toxicity figures for *D. magna* and, given the small chronic database, it was preferred to use the acute data for a MR calculation.

MR Calculations

The data used to derive the TV were:

57554 25924.83 112000 150000 100000 31600	22792.6 80241.1 155000 94000 800000 68000	3	78400 68000 406003.42 435138.77 760000 440000	49000 684.98 175000 235000 450000 663294.39	37595.94 273.86 477900 64000 406000	29137.20 100 220000 279548.06 155000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	37.79 1144 4969 21583				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 4.47.

MR TV (HC5 50%) = $1144 \div 4.47 = 255.928 = 255 \,\mu g/L$

However, this TV was not adopted as it was considerably above the acute toxicity values for a range of crustaceans. Therefore, a more protective TV was required. There were two possibilities:

1. to use the HC5 50% but divide it by a default AF of 10 (= $110 \mu g/L$) or

2. to use the HC1 50% with the ACR (= $4.47 \mu g/L$)

The first method still did not provide adequate protection to the acute toxicity data — so the second method was adopted.

MR TV (HC1 50%) = $37.79 \div 4.47 = 8.454 = 8.5 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
8.45	255.93	1111.63	4828.41

These were rounded off to

Marine Fails HR and MR

There were toxicity data for 2 species -a crustacean and a diatom.

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality than this and should therefore be adopted for marine waters.

LR TV = $8.5 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
8.45	255.93	1111.63	4828.41

These were rounded off to

8	250	1100	4800

2,4-dichloroaniline [CAS No. 554-00-7] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

16 007 14 078	10 138 2 348	24 596 638	20 782 400	596 2 200	11 832	15 000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	18.54 220.51 640.58 1860.87				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (fish) was 32.18.

MR TV = $220.51 \div 32.18 = 6.85 = 6.9 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.576	6.852	19.906	57.827

These were rounded off to

0.6 7 20 60

Marine Fails HR and MR LR Calculations

There were only toxicity data for 1 species — an alga. The highest level of TV that can be derived with the available data was a LR (ECL) TV.

LR (ECL) TV = lowest value \div 1000

= $1100 \ \mu g/L \div 1000$ = $1.1 \ \mu g/L$

However, the freshwater MR TV was of higher quality and was therefore adopted for marine waters as an LR (interim).

LR TV = $220.42 \div 32.18 = 6.8495 = 6.9 \,\mu\text{g/L}$

The other levels of protection are:

99%	95%	90%	80%
0.5761	6.852	19.906	57.827

These were rounded off to

0.6 7 20 60

2,5-dichloroaniline [CAS No. 95-82-9] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, which belonged to 2 taxonomic groups (crustacea and algae).

Therefore only a LR (environmental concern level) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	2920 μg/L ÷ 1000
	=	2.92 µg/L

This was rounded to $3 \mu g/L$

LR (ECL) TV = $3 \mu g/L$

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = 3 μ g/L

3,4-dichloroaniline [CAS No. 95-76-1] Freshwater HR Calculations

20 2700	7.54		80	760	3666	2200
HC1 50% HC5 50% HC10 50% HC20 50% HR TV = 3.349	= = = = 3.5 με	1.337 3.349 5.875 12.62 g/L				

99% 1.337	95% 3.349	90% 5.875	80% 12.62			
These were rounded off to						
1.3	3	6	13 µg/L			

Marine Fails HR MR Calculations

The data used to derive the TV were:

4325.31 3577.71	8246.21 1369		5468.09 2724.65	2592.30 9500	10850.28 8085.65	2300
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	868.98 1497 1934 2581				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR

MR TV = $1497 \div 10 = 149.7 = 150 \,\mu\text{g/L}$

The other levels of protection are:

99%	95%	90%	80%
86.898	149.679	193.353	258.109

These were rounded off to

3,5-dichloroaniline [CAS No. 626-43-7] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, which belonged to 2 taxonomic groups (crustacea and alga).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	1120 μg/L ÷ 1000
	=	1.12 µg/L

This was rounded to $1 \ \mu g/L$

 $LR (ECL) TV = 1 \mu g/L$

Marine

There were only toxicity data for 1 marine species.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 2500 µg/L \div 1000 = 2.5 µg/L

Benzidine

Freshwater

There were no screened toxicity data for freshwater organisms and therefore no data for this chemical in the database. However, there was an un-screened USEPA datum of 2500 μ g/L. Therefore a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 2500 µg/L \div 1000 = 2.5 µg/L

Marine

There were no toxicity data for marine organisms. Therefore the freshwater TV was adopted for marine waters.

LR TV = $2.5 \,\mu g/L$

Dichlorobenzidine

Freshwater

There were no screened toxicity data for freshwater organisms, and therefore no data in the database. There is however, an unscreened USEPA datum of 500 μ g/L. Therefore a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 500 µg/L \div 1000 = 0.5 µg/L

Marine

There were no toxicity data for marine organisms. Therefore the freshwater TV was adopted for marine waters.

 $LR TV = 0.5 \mu g/L$

Benzene [CAS No. 71-43-2] Freshwater Fails HR MR Calculations

91446.25	370000	13500	21800	425000	33713.34
31714.09	19865.74	36900.51	12836.78	6786.75	10300
28396.49	8437.14	12900	47766.97	51299.89	

405270.56 1370000 130000 29000	111101 100000 97274.6 370000	67	710000 34000 117934.64 190000	63268.69 48000 970000	42000 71000 34000	200000 10000 74000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	5838 9554 12914 19463				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The fish ACR for benzene was 1.97 — this was the only ACR and therefore was adopted.

MR TV = $9554 \div 1.97 = 4849.746 = 4850 \,\mu g/L$

However, this TV did not provide adequate protection for the most sensitive acute value of 4600 μ g/L. Therefore the default AF of 10 was used rather than the ACR.

MR TV = $9554 \div 10$ = 955.4

The other levels of protection are:

99%	95%	90%	80%
583.8	955.4	1291.4	1946.3

These were rounded off to

600	950	1300	2000 μg/L

Marine Fails HR MR Calculations

The data used to derive the TV were:

14142.14 21000 196568.55	11000 95247.0 165000	-	8115.65 20000 14832.40	22000 33000	40000 7878.60	88572.03 924000
HC1 50%	=	4740				
HC5 50%	=	7192				
HC10 50%	=	9282				
HC20 50%	=	13136				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The fish ACR for benzene was 1.97 — this was the only ACR and therefore was adopted.

MR TV = $7192 \div 1.97 = 3650.76 = 3650 \,\mu g/L$

However, this TV did not provide adequate protection for the most sensitive chronic value (an Australian species). Therefore the default AF of 10 was used rather than the ACR.

MR TV = $7192 \div 10$ = $719.2 \,\mu g/L$

This still did not provide adequate protection so the HC1 50% and the default AF were used to derive the TV.

Therefore MR TV = $4740 \div 10$ 474 500 µg/L = = The other levels of protection are: 99% 95% 90% 80% 474.0 719.2 1313.6 928.2 These were rounded off to 500 700 900 $1300 \ \mu g/L$

Toluene [CS No. 108-88-3] Fresh and Marine water Fails HR & MR LR (Interim) Calculations using QSAR derived chronic toxicity data

The data used to derive the TV were:

273000 3340 2660 5220	15400 305000 4250 3200	41400 31600 4330		38700 3690 1730		37900 3440 4700	16100 4950 3300
HC1 50% HC5 50% HC10 50% HC20 50%	= 1 = 2	139 762 302 312					
LR (Interim) TV	(HC5 50%)) =	1762	÷10	=	175 µg/L	
The other levels	of protection	n are:					
99% 113.9	95% 176.		90% 230.2		80% 331.2		
These were roun	ided off to						
110	180		230		330 µ	ıg/L	

Ethylbenzene [CAS No. 100-41-4] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

1000	9550	8070	1850	1730	2690
1120	1710	2170	862	2310	1330
2520 16800	142000 17000	25700	23100	6142	166000

HC1 50% = 488.96

HC5 50%	=	790.88				
HC10 50%	=	1061				
HC20 50%	=	1584				
LR (Interim) TV	(UC5 5)	10/1	=	790.88 ÷ 10	=	80 µg/L
	(110.5.5)	J /0)	_	790.88 ÷ 10	—	80 μg/L
The other levels	of protec	tion are:				
99%	9	5%		90%	80%	
48.896	7	9.088		106.1	158.4	
These were round	ded off t	0				
50	8	30		110	160 µ	g/L

o-xylene [CAS No. 95-47-6] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

16 100 12 000	16 100 3 488.0	8	16 100 4 700	7 821.76 73 000	16 299.38
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1995 3533 4665 6440			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $3533 \div 10 = 353.3 = 355 \,\mu g/L$

The other levels of protection are:

99% 199.5	95% 353.3	90% 466.5	80% 644
These were rounded of	f to		
200	350	470	640 µg/L

Marine Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

291 000	16 700	45 000	41 900	40 900	17 100	3 520
328 000	33 900	3 920	3 660	5 310	2 790	4 4 3 0
4 610	1 850	4 990	3 440	5 530		

HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1196 1882 2484 3625					
LR (Interim) TV	(HC5 50	%)	=	1882	÷ 10	=	190 µg/L

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

MR TV = $3533 \div 10 = 353.3 = 355 \,\mu g/L$

The other levels of protection are:

99% 199.5	95% 353.3	90% 466.5	80% 644
These were roun	ded off to		
200	350	470	640 μg/L

m-xylene [CAS No. 108-38-3] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

129000 4900 995 2270	8870 151000 1510		23900 15300 1970		21400 1670 780		20000 1560 2090		7310 2450 1170
HC1 50%	=	467.16							
HC5 50%	=	762.89							
HC10 50%	=	1029.9	5						
HC20 50%	=	1549.62	2						
LR (Interim) TV	(HC5 50)%)	=	762.89	÷ 10	=	76	=	75 μg/L
The other levels	of protec	tion are:							
99% 46.716	95% 76.289		90% 102.995		80% 154.962				
These were roun	ded off to)							

50 75 100 150 μg/L

p-xylene [CAS No. 106-42-3] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

2600	8800		8494	3200	88100
HC1 50%	=	1352			
HC5 50%	=	1964			
HC10 50%	=	2468			
HC20 50%	=	3368			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $1964 \div 10 = 196.4 = 196 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
135.2	196.4	246.8	336.8
These were rou	nded off to		
1.40	• • • •	950	
140	200	250	340 µg/L

Marine Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

142 000 166 000 2 170	9 550 16 800 862	25 700 1 850 2310		23 100 1 730 1 330	21 8 2 69 2 52	0	8 070 1 120	1 470 1 710
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	493.79 799.74 1074 1605						
LR (Interim)	TV (HC5 5	50%)	=	799.74	÷ 10	=	80 µg/L	

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

LR TV = $1964 \div 10 = 196.4 = 196 \,\mu g/L$

99% 135.2	95% 196.4	90% 246.8	80% 336.8
These were rou	nded off to		
140	200	250	340 μg/L

Isopropylbenzene (Cumene, 2-phenyl-propane) [CAS No. 98-82-8] Freshwater and Marinewater Fails HR and MR LR (Interim) Calculations based on QSAR derived toxicity data

The data used to derive the TV were:

61500 75000 896	5100 7450 351	13700 763 931	11800 712 417	10600 1220 991	3330 375	2600 538
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	178.9 304.6 422.0 657.5				
LR (Interim)	TV (HC5	50%) =	305 ÷ 10	=	30 µg/L	
The other lev	vels of prot	ection are:				
99% 17.89		95% 30.46	90% 42.2	80% 65.7		
These were a	ounded of	f to				
20		30	40	70 µ	.g/L	
Naphthalene [CAS No. 91-20-3] Freshwater						

Freshwater Fails HR MR Calculations

The data used to derive the TV were:

27	33000	5010	7464	2570	13000	2800
14450	3930	67800	2600	2113	5052	

NOTE: This contains data greater than the aqueous solubility (Aq sol x $2 = 60\ 000$). Data above the aqueous solubility were removed and recalculated below.

680	2421.58	2223.25	4788.49	2200	1843.91
3930	27	2800	14059.13	5009.99	33000
HC1 50%	=	24.66			

HC5 50%	=	162.40
HC10 50%	=	370.16
HC20 50%	=	854.09

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $162.40 \div 10 = 16.24 = 16 \,\mu\text{g/L}$

The other levels of protection are:

99%	95%	90%	80%
2.466	16.24	37.02	85.41

These were rounded off to

2.5 16 37 85 μg/L

Marine Fails HR MR Calculations

The data used to derive the TV were:

5300	750	1124.89	17736.91	1400
2336.77	700	1390	5087.4	1047.12
62833.02	3800			

NOTE: The above contains data greater than twice the aqueous solubility (ie. 60 000 μ g/L). Data above the aqueous solubility were removed and recalculated below.

5300	750		1124.89	17736.91	1400
2336.78	2700		1390	5087.40	1047.12
57000	3800				
HC1 50%	=	500.25			
HC5 50%	=	724.74			
HC10 50%	=	909.32			
HC20 50%	=	1238.26			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV (HC1 50%) = $500.25 \div 10 = 50.025 = 50.03 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the TV did not provide adequate protection (a chronic crab value was below the TV).

99% 50.025	95% 72.474	90% 90.932	80% 123.826
These were roun	ded off to		
50	70	90	120 µg/L

Anthracene [CAS No. 120-12-7] Fresh and Marinewater Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

0.63 4240 436 286	2.94 1030 110		20500 26900 278	2360 2580 107	6350 237 279	5070 221 85.2
HC1 50%	=	0.126				
HC5 50%	=	3.622				
HC10 50%	=	15.55				
HC20 50%	=	68.71				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $0.126 \div 10$ = $0.013 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because anthracene can bioaccumulate.

The other levels of protection are:

99% 0.01256	95% 0.3622	90% 1.5545	80% 6.871
These were roun	ded off to		
0.01	0.4	1.5	7 μg/L

Phenanthrene [CAS No. 85-01-8] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

42.33	32	60	150	120	232
216	429	107	272	105	273
83.1	280	20100	2330	6260	4990
4170	1010	26400	2530		

HC1 50%	=	19.88
HC5 50%	=	38.21
HC10 50%	=	56.99
HC20 50%	=	98.20

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $19.88 \div 10 = 1.99 \text{ ug/L}$

NOTE: The data above contains data greater the aqueous solubility cut-off ($2 \times aq. sol.$) was 1632. It was recalculated using this reduced database below.

42.33	32	60		150	120	232	216
429	107	272		105	273	83.1	280
HC1 50	%	=	5.73				
HC5 50	%	=	22.94				
HC10 5	0%	=	41.70				
HC20 5	0%	=	75.79				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value is used to calculate the TV.

LR (Interim) TV (HC1 50%) = $5.73 \div 10$ = $0.6 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.573	2.294	4.17	7.579
These were rou	unded off to		
0.6	2	4	8 μg/L

Fluoranthene [CAS No. 206-44-0] Fresh and Marine water Fails Level HR and MR LR (Interim) Calculations using QSAR derived chronic toxicity data

The data used to derive the TV were:

12.32	90	18	30	940	2530
1890	2530	287	27.2	789	65.7
61.3	138	20.9	77.2	29.3	74.4
74.9	16.3	6080	8520		

NOTE: The data included toxicity data greater than twice the aqueous solubility. These data were removed and the TV recalculated below.

12.32 65.7 74.9	90 61.3 16.3		18 138 74.4	30 20.9	287 77.2	27.2 29.3
HC1 50% HC5 50% HC10 50%	= = =	10.01 13.75 16.70				

 $HC20\ 50\% = 21.75$

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (H	HC1 50%) =	10.01 ÷ 10	$=$ 1 μ g/L			
The other levels of	protection are:					
99%	95%	90%	80%			
1.001	1.375	1.67	2.175			
These were rounded off to						
1	1.4	1.7	$2 \ \mu g/L$			

Benzo[a]pyrene [CAS No. 50-32-8] Fresh and Marine water Fails HR and MR LR (Interim) calculations using QSAR derived toxicity data

The data used to derive the TV were:

1650 2480 19.4	356 222 7.21	957 16.5 18.1	664 15.4 2.66	483 40.3 17.3	72.1 3.11 6.3	10.4 3.42 5.00
HC1 50%	=	1.18				
HC5 50%	=	2.44				
HC10 50%	=	3.82				
HC20 50%	=	7.02				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $1.18 \div 10 = 0.1 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.118	0.244	0.382	0.702

These were rounded off to

Nitrobenzene [CAS No. 98-95-3] Freshwater Fails HR MR Calculations

6000	43000	106359.05	29849.62	18000	22234.80
------	-------	-----------	----------	-------	----------

142800

HC1 50%	=	2662
HC5 50%	=	6314
HC10 50%	=	9431
HC20 50%	=	14749

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (crustaceans) was 11.48.

MR TV = $6314 \div 11.48 = 550 = 550 \,\mu\text{g/L}$

The other levels of protection are:

99% 231.8815331	95% 550	90% 821.5156794	80% 1284.756098
These were rounded of	f to		
230	550	820	1300 µg/L

Marine Fails HR and MR

There were only acute toxicity data for 2 species which belonged to 2 taxonomic group2 (fish and alga).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 10 300 µg/L \div 1000 = 10.3 µg/L

However, the MR TV for freshwater could be adopted as a LR TV.

LR TV = $6314 \div 11.48 = 550 = 550 \,\mu\text{g/L}$

The other levels of protection are:

99% 231.8815331	95% 550	90% 821.5156794	80% 1284.756098
These were rounded of	f to		
230	550	820	1300

1,2-dinitrobenzene [CAS No. 528-29-0] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, a fish and a protozoan.

ThereforeOnly a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	600 μg/L ÷ 1000
	=	0.6 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted as the LR TV for marine waters.

Therefore LR (ECL) TV = $0.6 \,\mu g/L$

1,3-dinitrobenzene [CAS No. 99-65-0] Freshwater Fails HR and MR

There were only chronic data for 3 species which belonged to 3 taxonomic groups (fish, crustacea and alga). Therefore a LR (interim) TV could be derived using chronic data.

There were only acute toxicity data for 6 species which belonged to 3 taxonomic groups (fish, crustacea and alga). Therefore a LR (interim) TV could be derived using acute data.

LR (interim) TV = lowest value $\div 20$ = 260 $\div 20$ = 13 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR TV was adopted for marine waters.

 $LR TV = 13 \mu g/L$

1,4-dinitrobenzene (ρ dinitrobenzene) [CAS No. 100-25-4] Freshwater Fails HR and MR

There were only acute toxicity data for 4 species, which belonged to 3 taxonomic group.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 603 µg/L \div 1000 = 0.603 µg/L

This was rounded to 0.6 μ g/L

LR (ECL) TV = $0.6 \,\mu g/L$

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

ECL = $0.6 \,\mu g/L$

1,3,5-trinitrobenzene Freshwater Fails HR and MR

There were only chronic data for 3 species which belonged to 3 taxonomic groups (fish, crustacea and alga). Therefore a LR (interim) TV could be derived using chronic data.

There were only acute toxicity data for 6 species which belonged to 3 taxonomic groups (fish, crustacea and alga). Therefore a LR (interim) TV could be derived using acute data.

LR (interim) TV = lowest value $\div 20$ = $80 \div 20$ = $4 \mu g/L$

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

 $LR (ECL) TV = 4 \mu g/L$

1-methoxy-2-nitrobenzene [CAS No. 91-23-6] Freshwater Fails HR and MR

There were only chronic toxicity data for 1 species, a crustacean. There were only acute toxicity data for 2 species, a fish and a green alga. By combining the data there were values for a fish, a crustacean and green alga.

ThereforeOnly a LR (interim) TV could be derived.

LR (Interim) TV	=	lowest value ÷ 100
	=	13,000 μg/L ÷ 100
	=	130 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater interim WQG was adopted as the LR TV for marine waters.

Therefore LR TV = $130 \,\mu g/L$

1-methoxy-4 nitrobenzene [CAS No. 100-17-4] Freshwater Fails HR and MR

There were only toxicity data for 2 species, 1 green alga and 1 crustacean.

ThereforeOnly a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div AF = 3200 μ g/L \div 200 = 16 μ g/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no toxicity data for marine species. Therefore the freshwater LR TV was adopted as the LR TV for marine waters.

Therefore LR TV = $16 \,\mu g/L$

1-chloro-2-nitrobenzene [CAS No. 88-73-3] Freshwater Fails HR and MR

There were chronic toxicity data for 1 species, a crustacean. There were acute toxicity data for 2 species, a crustacean and an alga

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 3000 µg/L \div 200 = 15 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) was adopted for marine waters.

ECL = $15 \,\mu g/L$

1-chloro-3-nitrobenzene [CAS No. 121-73-3] Freshwater Fails HR and MR

There were chronic toxicity data for 1 species — a green alga. There were acute toxicity data for 3 species that belonged to 2 taxonomic groups (fish and crustacea). By combining the data there were data for 4 species that belonged to 3 taxonomic groups (alga, crustacea and fish). Therefore a LR (interim) TV could be derived.

LR (interim) TV = lowest value \div 100 = 1200 \div 100 = 12 µg/L

Marine Fails HR and MR

There were no toxicity data for marine species. Therefore the freshwater LR TV was adopted for marine waters.

 $LR TV = 12 \mu g/L$

1-chloro-4-nitrobenzene [CAS No. 100-00-5] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, which belonged to 2 taxonomic groups — an crustacean and an alga. There was a chronic toxicity value for a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest chronic value $\div 200$ = 190 $\div 200$ = 0.95 $\approx 1 \mu g/L$ An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

 $LR TV = 1 \mu g/L$

1-chloro-2,4-dinitrobenzene [CAS No. 97-00-7] Freshwater Fails HR and MR

There were only toxicity data for 2 species, 1 crustacean and 1 alga.

ThereforeOnly a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 200
	=	$800 \ \mu g/L \div 200$
	=	4 μg/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no toxicity data for marine species. Therefore the freshwater LR TV was adopted as the LR TV for marine waters.

Therefore LR TV = $4 \mu g/L$

1,2-dichloro-3-nitrobenzene [CAS No. 3209-22-1] Freshwater Fails HR and MR

There were only toxicity data for 2 species, 1 crustacean and 1 alga.

ThereforeOnly a LR (ECL) could be derived.

LR (ECL) TV = lowest value \div 200 = 2900 µg/L \div 200 = 14.5 µg/L \approx 15 µg/L An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no toxicity data for marine species. Therefore the freshwater LR TV was adopted as the LR TV for marine waters.

Therefore LR TV = $15 \,\mu g/L$

1,3-dichloro-5-nitrobenzene [CAS No. 618-62-2] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, which belonged to 2 taxonomic groups (crustacea and a green algae).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 200 = 600 µg/L \div 200 = 3 µg/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

ECL = $3 \mu g/L$

1,4-dichloro-2-nitrobenzene [CAS No. 89-61-2] Freshwater Fails HR and MR

There were only toxicity data for 2 species, which belonged to 2 taxonomic groups (crustacea and green algae).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 200 = 2100 µg/L \div 200 = 10 µg/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

 $LR TV = 10 \mu g/L$

2,4-dichloro-2-nitrobenzene [CAS No. 611-06-3] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, which belonged to 2 taxonomic groups (crustacea and green algae).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 200 = 2400 µg/L \div 200 = 12 µg/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

ECL = $12 \,\mu g/L$

1, 2, 4, 5-tetrachloro-3-nitrobenzene [CAS No. 117-18-0] Freshwater Fails HR and MR

There were only acute toxicity data for 6 species, 3 fish, 2 crustaceans and 1 mollusc.

Therefore only a LR (environmental concern level) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 200
	=	270 μg/L ÷ 1000
	=	0.27 μg/L
	*	0.3 µg/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no toxicity data for marine species. Therefore the freshwater LR TV was adopted as the LR TV for marine waters.

Therefore LR TV = $0.3 \,\mu g/L$

1,5-dichloro-2,4-dinitrobenzene [3698-83-7] Freshwater Fails HR and MR

There were only acute toxicity data for 5 species of fish

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 26 µg/L \div 1000 = 0.026 µg/L Which was rounded up to 0.03 μ g/L

LR (ECL) TV = $0.03 \,\mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.03 \,\mu g/L$

,3,5-trichloro-2,4-dinitrobenzene Freshwater Fails HR and MR

There were no chronic toxicity data. There were only acute toxicity data for 1 species — a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 222 µg/L \div 1000 = 0.222 µg/L

Which was rounded up to 0.2 μ g/L

LR (ECL) TV = $0.2 \,\mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.2 \,\mu g/L$

1-fluoro-4-nitrobenzene [CAS No. 350-46-9] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species, a fish.

ThereforeOnly a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	28400 μg/L ÷1000
	=	28.4 µg/L
	~	28 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR TV was adopted as the LR TV for marine waters.

Therefore LR TV = $28 \,\mu g/L$

2-nitrotoluene (1-methyl-2-nitrobenzene) [CAS No. 88-72-2] Freshwater Fails HR and MR

There were only toxicity data for 3 species, 1 fish (acute), 1 crustacean (acute)and 1 alga (chronic).

ThereforeOnly a LR (Interim) TV could be derived.

LR (Interim) TV	=	lowest value ÷ 100
	=	11 000 μg/L ÷100
	=	110 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (interim)TV was adopted as the LR TV for marine waters.

Therefore LR TV = $110 \,\mu g/L$

3-nitrotoluene (1-methyl-3-nitrobenzene) [CAS No. 99-08-1] Freshwater Fails HR and MR

There were only toxicity data for 3 species, 1 fish (acute), 1 crustacean (acute) and 1 alga (chronic).

ThereforeOnly a LR (Interim) TV could be derived.

LR (Interim) TV = lowest value $\div 100$ = 7500 µg/L $\div 100$ = 75 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (interim) TV was adopted as the LR TV for marine waters.

Therefore LR TV = $75 \,\mu g/L$

4-nitrotoluene (1-methyl-4-nitrobenzene) [CAS No. 99-99-0] Freshwater Fails HR and MR

There were only toxicity data for 3 species, 1 fish (acute), 1 crustacean (acute) and 1 alga (chronic).

ThereforeOnly a LR (Interim) TV could be derived.

LR (Interim) TV	=	lowest value ÷ 100
	=	12 100 μg/L ÷ 100
	=	121 µg/L
	=	120 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (interim) TV was adopted as the LR TV for marine waters.

Therefore ECL = $120 \ \mu g/L$

2,3-dinitrotoluene [CAS No. 602-01-7] Freshwater Fails HR and MR

There were no chronic toxicity data. There was only acute toxicity data for 3 species that belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 330 µg/L \div 1000 = 0.33 µg/L

Marine

There were no chronic toxicity data. There was only acute toxicity data for 2 species that belonged to 2 taxonomic groups (fish, and crustacea).

Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 400 µg/L \div 1000 = 0.4 µg/L

2,4-dinitrotoluene [CAS No. 121-14-2] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

17663	6562	23452	33000	31553	9600	1900
6200	1833	3000	1600	3800	255	1006
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	103.9 426.24 802.2 1581				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The fish ACR was 6.33.

MR TV (HC1 50%) = $103.9 \div 6.33$ (ACR) = $16.41 = 16 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the HC5 50% figure did not provide adequate protection to chronic toxicity data.

99% 16.42338073	95% 67.33649289	90% 126.7298578	80% 249.7630332
These were rounded of	f to		
16	65	130	250 µg/L

Marine

There is no toxicity data for marine species. Therefore the freshwater MR TV was adopted for marinewaters.

LR TV (HC1 50%) = $16 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
16.42338073	67.33649289	126.7298578	249.7630332
These were rounded of 16	f to 65	130	250 μg/L

2,6-dinitrotoluene [CAS No. 606-20-2] Freshwater Fails HR and MR

There were chronic toxicity data for 2 species that belonged to 2 taxonomic groups (crustacean and algae).

: Only a LR (ECL) TV could be derived.

An AF of 200 was used because of chronic data (limited)

LR (ECL) TV	=	lowest value ÷ 200
	=	60 μg/L ÷ 200
	=	0.3 µg/L

Marine

There were no chronic or acute toxicity data. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 200 = 60 µg/L \div 200 = 0.3 µg/L

2,4,6-trinitrotoluene (2-methyl-1, 3, 5-trinitrobenzene) [CAS No. 118-96-7] Freshwater **Fails HR MR** Calculations

The data used to derive the TV were:

2400 24800	2486.79 4900		1200 9100	2190.82 3346.37	4451.15	6500
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1004 1371 1648 2107				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

	$\div 10 = 137.1 =$ s of protection are:	= 140 µg/L	
99%	95%	90%	80%
100.4	137.1	164.8	210.7
These were rou	inded off to		
100	140	160	210 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater MR TV was adopted for marine waters.

LR TV	=	140 µg/L
-------	---	----------

The other levels of protection are:

99% 100.4	95% 137.1	90% 164.8	80% 210.7				
These were rounded off to							
100	140	160	210 µg/L				

1,2-dimethyl-3-nitrobenzene [CAS No. 83-41-0] **Freshwater** Fails HR and MR

There were only acute toxicity data for 1 species — a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000

= $4200 \ \mu g/L \div 1000$ = $4.2 \ \mu g/L$

This was rounded to 4 μ g/L

 $LR (ECL) TV = 4 \mu g/L$

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV adopted for marine waters.

 $LR TV = 4 \mu g/L$

1,2-dimethyl-4-nitrobenzene [CAS No. 99-51-4] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species — a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	16 000 μg/L ÷ 1000
	=	16 µg/L

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR TV = $16 \,\mu g/L$

4-chloro-3-nitrotoluene (1-chloro-4-methyl-2-nitrobenzene) [CAS No. 89-60-1] Freshwater Fails HR and MR

There were only chronic toxicity data for 1 species, (a crustacea) and acute toxicity data for 1 species (an alga).

Therefore only a LR (ECL) TV could be derived.

LR (ECL)	=	lowest value ÷ 200
	=	300 μg/L ÷ 200
	=	1.5 μg/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $1.5 \,\mu g/L$

Chlorobenzene [CAS No. 108-90-7] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

4800 14900 28800 1540	2900 40000 3280 4150		3890 36800 3060 2700	320 1430 4540 457)	43588.9 20 310 3480 253.4	99	246000 280000 3850
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	165.61 544.99 970.09 1888.89)					
LR (Interim) TV	(HC5 50)%)	=	544.99 ÷ 10	=	54.49	=	$54 \ \mu g/L$
The other levels	of protec	tion are:						
99% 16.561	95% 54.499		90% 97.009	80% 188.8	89			
These were rounded off to								
15	55		100	190	µg/L			

1,2-dichlorobenzene [CAS No. 95-50-1] Freshwater Fails HR MR Calculations

There were chronic toxicity data for 4 species which belonged to 3 taxonomic groups (fish, crustacea and green algae). There were acute toxicity data for 7 species which belonged to 3 taxonomic groups (fish, crustaceans and insects). In this case the toxicity data for the green algae were combined with the acute toxicity data to derive a MR TV using the statistical extrapolation method. The data used to derive the TV were:

6800 1761.14	9460.4 12000	8	2294.85 13500	34777.92 2200	4793
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1160 1641 2029 2710			

NOTE: Because this TV is derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There is no ACR.

MR TV (HC5 50%) = $1641 \div 10 = 164.1 = 164 \,\mu g/L$

99%	95%	90%	80%
116	164.1	203	271

These were rounded off to

120 160 200 270 μg/L

Marine Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

388.99 116000 2200 1170 1540	5000 8750 139000 1730		7600 23600 13900 681		7600 20700 1470 1820		7600 19000 1370 909		7600 13 500 2250 1950
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	365.6 620.2 857.0 1331							
LR (Interim) TV	(HC5 50	%)	=	620.2 ÷	10	=	62	=	60 µg/L

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

Therefore LR TV = $164 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
116	164.1	203	271

These were rounded off to

120 160 200 270 µg/L

1,3-dichlorobenzene [CAS No. 541-73-1] Freshwater Fails HR MR Calculations

5000	8044.62	2	2244.99	30000	114000
HC1 50%	=	1179			
HC5 50%	=	1905			
HC10 50%	=	2555			
HC20 50%	=	3810			

NOTE: Because this TV is derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 7.35.

MR TV (HC5 50%) = $1905 \div 7.35 = 259.18 = 260 \,\mu\text{g/L}$

99%	95%	90%	80%
160.4081633	259.1836735	347.6190476	518.3673469

These were rounded off to

160 260 350 520 μg/L

Marine Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

1000 911 7550 11400	454.97 1420 20300		846 1480 17700		1210 707 19000		1130 1590 11600	0	1880 96100 11600
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	272.78 464.79 644.03 1003.87							
LR (Interim) TV	(HC5 50	9%)	=	464.79 -	÷ 10	=	46.48	=	46 µg/L

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

LR TV (HC5 50%) = $1905 \div 7.35 = 259.18 = 260 \,\mu\text{g/L}$

The other levels of protection are:

99%	95%	90%	80%
160.4081633	259.1836735	347.6190476	518.3673469

These were rounded off to

160 260 350 520 μg/L

1,4-dichlorobenzene [CAS No. 106-46-7] Freshwater Fails HR MR Calculations

4250 700	2512.38 1200	3	4300 13000	1178.98 28000	8226.14	2896
HC1 50%	=	510.5				
HC5 50%	=	764.2				
HC10 50%	=	978.2				
HC20 50%	=	1369				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 13.26.

MR TV (HC5 50%) = $764.2 \div 13.26$ = 57.63 = $60 \mu g/L$

The other levels of protection are:

99%	95%	90%	80%
38.5	57.63198	73.77225	103.2338

These were rounded off to

40 60 75 100 μg/L

Marine Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

114000	8620	23200	20300	18600	6290	570
136000	13700	1440	1350	2210	297.76	1140
1690	320	1780	887	1910	650	31
HC1 50%	=	29.86				
HC5 50%	=	125.76				
HC10 50%	=	251.44				
HC20 50%	=	558.2				
LR (Interim)	TV (HC5	50%) =	= 125.76	÷10 =	12.5 µg/L	

However, the freshwater TV was of higher quality than this and should therefore be adopted for marine waters.

The other levels of protection are:

99%	95%	90%	80%
38.5	57.63198	73.77225	103.2338

These were rounded off to

40 60 75 100 μg/L

1,2,3-trichlorobenzene [CAS No. 87-61-6] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

3100	710	279.1	1601.97	1700	900
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	69.42 222.13 366.73 607.2			

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (crustaceans) was 22.44.

MR TV (HC1 50%) = $69.42 \div 22.44 = 3.0936 = 3.1 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because 1,2,3-trichlorobenzene can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
3.093582888	9.898841355	16.34135472	27.05882353

These were rounded off to

3 10 16 30 μg/L

Marine Fails HR and MR LR (Interim) Calculation using QSAR derived toxicity data

The data used to derive the TV were:

250	34.64		110	25	3790	10200
8390	7210		1940	4640	445	415
775	243		523	532	189	553
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	9.88 38.94 74.66 156.48				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $9.88 \div 10 = 0.988 = 1 \,\mu g/L$

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

Therefore LR TV = $3.1 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
3.093582888	9.898841355	16.34135472	27.05882353

These were rounded off to

3 10 16 30 µg/L

1,2,4-trichlorobenzene [CAS No. 120-82-1] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

1100 2668.15	6300 3020		1748.44 930	3268.30 3160	2072.86	2868.15
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	456.3 892.4 1193 1606				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 5.32.

MR TV (HC1 50%) = $456.3 \div 5.32 = 85.77 = 85 \ \mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because 1,2,4-trichlorobenzene can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
85.778	167.735	224.320	301.805

These were rounded off to

85 170 220 300 μg/L

Marine Fails HR MR Calculations

The data used to derive the TV were:

6000 890 2600	5095.5 930 3320		1100 8750	2600 2990	540 3650
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	117.89 424.0 736.2 1282			

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 5.32.

MR TV (HC1 50%) = $117.89 \div 5.32 = 22.16 = 22 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
22.15977444	79.69924812	138.3834586	240.9774436

These were rounded off to

20 80 140 240 µg/L

1,3,5-trichlorobenzene [CAS No. 108-70-3] Fresh and Marinewater Fails HR and MR LR (Interim) Calculation using QSAR derived toxicity data

The data used to derive the TV were:

1000 43700 183	34100 4230 480	3520 403 167	9490 376 499	7750 709	6640 159	1760 215	228 474
HC1 50%	=	73.7					
HC5 50%	=	129.6					
HC10 50%	=	183.1					
HC20 50%	=	293.0					

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) (HC1 50%) TV = $73.7 \div 10$ = $7.5 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
7.37	12.96	18.31	29.3

These were rounded off to

8 13 20 30 μg/L

1, 2, 3, 4-tetrachlorobenzene [CAS No. 634-66-2] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

100	23.45		859	96.4	197	184
376	82.5		231	250	230	64.1
233	2160		5820	4560	3750	2200
HC1 50% HC5 50%	=	20.57 39.74				

 $\begin{array}{rcl} HC10 \ 50\% & = & 58.16 \\ HC20 \ 50\% & = & 95.91 \end{array}$

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $20.57 \div 10 = 2.06 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
2.057	3.974	5.816	9.591

These were rounded off to

2 4 6 10 μg/L

1,2,3,5-tetrachlorobenzene [CAS No. 634-90-2] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

825 222 3620	92.1 85.1 2120	189 221	176 60.9	363 224	61.4 2100	78.5 4420
HC1 50%	=	31.46				
HC5 50%	=	50.67				
HC10 50%	=	67.82				
HC20 50%	=	100.86				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $31.46 \div 10$ = $3 \mu g/L$

The other levels of protection are:

99%	95%	90%	80%
3.146	5.067	6.782	10.086

These were rounded off to

3 5 7 10 μg/L

1,2,4,5-Tetrachlorobenzene [CAS No. 95-94-3] Fresh and Marine water Fails HR and MR LR (Interim) Calculations using QSAR derived toxicity data

The data used to derive the TV were:

90	105.7		212.9	198.7	404	253.7
70.8	91.3		250.2	96.0	249	70.8
HC1 50%	=	53.65				
HC5 50%	=	66.01				
HC10 50%	=	74.95				
HC20 50%	=	89.09				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $53.65 \div 10 = 5.5 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
5.365	6.601	7.495	8.909

These were rounded off to

5 7 8 9 μg/L

Pentachlorobenzene [CAS No. 608-93-5]

Fresh and Marinewater

Fails HR and MR

Calculations for LR (interim) TV using QSAR derived toxicity data The data used to derive the TV were:

34	31.41	60.73	7260	1130	3040
2270	1770	342	32.3	10200	943
78.3	73.1	165	24.7	92.0	34.8
89.2	19.2	88.4			

NOTE: The above data contains a number of data that are greater than twice the aqueous solubility (i.e. 480 μ g/L- the solubility cut-off for toxicity data). These data were removed and the remaining data put through the Burr distribution method.

34	31.41	60.73	342	32.3	78.3
73.1	165	24.7	92.0	34.8	
89.2	19.2	88.4			

HC1 50%	=	16.05
HC5 50%	=	21.03
HC10 50%	=	24.82
HC20 50%	=	52.79

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $16.05 \div 10$ = $1.6 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
1.605	2.103	2.482	5.279

These were rounded off to

1.5 2 2.5 5 μg/L

Hexachlorobenzene [118-74-1] Fresh and Marine water Fails HR and MR Calculations for LR (interim) TV using QSAR derived data

The data used to derive the TV were:

2920	572	1540	1090	811
131	10.3	4320	390	30
28	70	6.24	7.06	35.2
13.2	33.3	5.48	32.2	1.8

NOTE: The above data contains a number of data that were greater than twice the aqueous solubility (i.e. 12 μ g/L- the solubility cut-off for toxicity data). These data were removed and the remaining data put through the Burr distribution method.

10.3	6.24	7.	06	5.48	1.8
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.534 1.40 2.125 3.22			

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

LR (Interim) TV (HC1 50%) = $0.53 \div 10$ = $0.05 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.0534	0.14	0.2125	0.322

These were rounded off to

0.05 0.1 0.2 0.3 µg/L

1-Chloronaphthalene [90-13-1] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, a fish and a crustacean.

ThereforeOnly a LR(ECL) TV could be derived.

LR(ECL) TV	=	lowest value ÷ 1000
	=	1600 μg/L ÷ 1000
	=	1.6 µg/L

Marine

There were only acute toxicity data for 1 species, a fish.

Therefore Only a LR(ECL) TV could be derived.

LR(ECL) TV	=	lowest value ÷ 1000
	=	690 μg/L ÷ 1000
	=	0.69 µg/L

This was rounded off to 0.7 μ g/L

Therefore LR(ECL) TV = $0.7 \,\mu g/L$

Capacitor 21 [CAS No. 66419-38-3] Freshwater Fails HR and MR

There were only acute toxicity data for 8 species which belonged to 2 different taxonomic groups.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	1.5 μg/L ÷ 1000
	=	0.0015 µg/L

This was rounded to 0.002 µg/L

LR (ECL) TV = $0.002 \,\mu g/L$

Marine

There were no toxicity data for marine species. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.002 \,\mu g/L$

Aroclor 1016 [CAS No. 12674-11-2] Freshwater Fails HR and MR

After screening there were only acute toxicity data for 14 species which belonged to two different taxonomic groups (fish & amphibia).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 1.08 µg/L \div 1000 = 0.00108 µg/L

Which was rounded off to 0.001 $\mu g/L$

LR (ECL) TV = $0.001 \,\mu g/L$

Marine

After screening there were acute toxicity data for 3 species which belonged to 2 different taxonomic groups (crustacea & molluscs).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 9.1 µg/L \div 1000 = 0.009 µg/L

Aroclor 1221 [CAS No. 11104-28-2] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, which belonged to 1 taxonomic group (fish).

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 1050 µg/L \div 1000 = 1.05 µg/L

This was rounded off to 1 $\mu g/L$

LR (ECL) TV = $1 \mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) was adopted for marine waters.

 $LR (ECL) TV = 1 \mu g/L$

Aroclor 1232 [CAS No. 11141-16-5] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, which belonged to 1 taxonomic group (fish).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 320 µg/L \div 1000 = 0.32 µg/L This was rounded off to 0.3 μ g/L

LR (ECL) TV = $0.3 \,\mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.3 \,\mu g/L$

Aroclor 1242 [CAS No. 53469-21-9] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

5414.98 11.66	15 39.81		471.17 4.08	10	27.02	400
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1.833 3.662 5.593 9.955				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 5.87.

MR TV (HC1 50%) = $1.833 \div 5.870 = 0.312 = 0.3 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because aroclor-1242 can bioaccumulate.

The other levels of protection are:

99% 0.312265758	95% 0.623850085	90% 0.952810903	80% 1.695911414
These were rounded of	f to		
0.3	0.6	1.0	1.7 μg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 1 species — a crustacean. Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 13 µg/L \div 1000 = 0.013 µg/L However, the freshwater TV was of higher quality than the marine TV and was therefore adopted for marine waters.

LR TV (HC1 50%) = $0.3 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because aroclor-1242 can bioaccumulate.

The other levels of protection are:

99% 0.312265758	95% 0.623850085	90% 0.952810903	80% 1.695911414
These were rounded of	'f to		
0.3	0.6	1.0	1.7 μg/L

Aroclor 1248 [CAS No. 12672-29-6] Freshwater Fails HR and MR

There were only acute toxicity data for 5 species, which belonged to 2 different taxonomic groups (fish and crustaceans).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 29 µg/L \div 1000 = 0.029 µg/L

This was rounded up to 0.03 $\mu g/L$

LR (ECL) TV = $0.03 \,\mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.03 \ \mu g/L$

Aroclor 1254 [CAS No. 11097-69-1] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

1.18 2400	145.33 2400	2740 100	0.53 200	37110.07 4.57	0.32 11.95	7.70 1.90	1262.93	9
HC1 50 HC5 50 HC10 5 HC20 5	% 0%	= = =	0.11 0.39 0.85 2.43					

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV is derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (fish) was 11.38.

MR TV (HC1 50%) = $0.11 \div 11.38 = 0.0097 = 0.01 \, \mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because aroclor-1242 can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
0.0097	0.034	0.075	0.214

These were rounded off to

0.01 0.03 0.07 0.2 µg/L

Marine Fails HR and MR

There were only acute toxicity data for 3 species that belonged to one taxonomic group — fish. Therefore, the data only meet the minimum data requirements of a LR (ECL) TV. However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

MR TV (HC1 50%) = $0.11 \div 11.38 = 0.0097 = 0.01 \ \mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because aroclor-1242 can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
0.0097	0.034	0.075	0.214

These were rounded off to

0.01 0.03 0.07 0.2 μg/L

Aroclor 1260 [CAS No. 11096-82-5] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species (a fish).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	25000 μg/L ÷ 1000
	=	25 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater ECL was adopted for marine waters.

LR (ECL) TV = 25 μ g/L

Aroclor 1262 [CAS No. 37324-23-5] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species (a fish).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 50000 µg/L \div 1000 = 50 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $50 \,\mu g/L$

Aroclor 1268 [CAS No. 11100-14-4] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species (a fish).

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 50000 µg/L \div 1000 = 50 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $50 \ \mu g/L$

2,3,4'-trichlorobiphenyl [CAS No. 38444-85-8] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species (a crustacean).

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	70 μg/L ÷ 1000
	=	0.07 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.07 \,\mu g/L$

4,4'-dichlorobiphenyl [CAS No. 2050-68-2] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species (a crustacean).

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	100 µg/L ÷ 1000
	=	0.1 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.1 \,\mu g/L$

2,2',4,5,5'-pentachloro-1,1'-biphenyl [CAS No. 37680-73-2] Freshwater Fails HR and MR

After screening there were only acute toxicity data for one species (crustacea).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 210 µg/L \div 1000 = 0.21 µg/L

Which was rounded off to 0.02 $\mu g/L$

LR (ECL) TV = 0.2 μ g/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

 $LR (ECL) TV = 0.2 \mu g/L$

2,4,6,2',4',6'-hexachlorobiphenyl [CAS No. 33979-03-2] Freshwater Fails HR and MR

After screening there were only acute toxicity data for one species (a crustacean).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 150 µg/L \div 1000 = 0.15 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.15 \,\mu\text{g/L}$

Phenol [CAS No. 108-95-2] Fails HR MR Calculations

The data used to derive the TV were:

6734.98	9499.47	14094.33	15499.68	27970.57	46752.47
10600	46000	1555	31500	23595.69	6984.64
30499.84	8000	32196.58	33408.61	16700	36300
32465.37	18435.23	16000	23520.69	10860.49	8410.73
42252.22	34751.20	9000	37229.02	40029.17	7093.66
21794.49	64652.92	103963.09	50000	36000	126000
8800	32000	7337.58	42000	20000	120000
132000	106338.63		16553.55	11714.25	56483.71
39700	130000	22912.88	37400	63029.84	55645.51
18000	21000	57000	6000	37000	16000
50000	30000	190000	190000	16933.69	2000
670820.39	240000	944911.28	346410.16	161961.09	80500
33602.96	28000	50000	287749.89	69800	2000000
16000	200000	1000000	440000	860000	• • • • • •
432666.15	1084634.8		500000	2000	30000
2000	7000	50000	7000	450000	100000
400000	2000	24000	1074342.85	280000	
173129.25	22000	30000	70888.67	854634.42	50000
1000000	580000	564621.62	320000	100000	
157590.97	160790.56	265000	125701.75	350000	
368385.17	288444.1	260000	107000	94000	520000
370000	920516.41	1000000	1000000	95394.71	420000
357559.07	120000	460000	1080000	480000	1280000
290000	823771.81	35600	120000	750999.33	340000
59000	230867.93	100000	66675.64	150000	64000
148098.49	370000	102000	72876.27		
HC1 50%	= 1	386			
HC5 50%		269			
HC10 50%		843			
HC20 50%		9844			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There ACR for all species was 16.278.

MR TV = $5269 \div 16.278 = 323.688 = 325 \,\mu g/L$

The other levels of protection are:

99% 85.15603883		95% 323.7013	90% 604.6904	80% 1219.047		
These were r	ounded off t	to				
85		320	600	1200 µg/L		
Marine Fails HR MR Calcu The data use		he TV were:				
10000 14230 10846.35 HC1 50%	10000 41632.47 175000	11000 56000 52800 4394	16040.57 56000 122250.85	5200 21729.47 222620.44	9500 128048.43 49878	20459.49 181439.14 13000
HC5 50%	=	6571				
HC10 50%	=	8405				

4

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There ACR for all species was 16.278.

MR TV = $4375 \div 16.278 = 268.77 = 270 \ \mu g/L$

11752

The other levels of protection are:

=

99%	95%	90%	80%
269.954	403.666	516.367	721.931

These were rounded off to

HC20 50%

270 400 520 720 μg/L

2,4-dimethylphenol [CAS No. 105-67-9] Freshwater Fails Hr and MR

There were only acute toxicity data for 4 species which belonged to 3 taxonomic groups (a fish, crustecea and protozoa).

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	2100 μg/L ÷ 1000
	=	2.1
	~	2 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $2 \mu g/L$

Nonyl phenols Freshwater Fails HR and MR

There were only chronic toxicity data for 1 species, a crustacean. There were only acute toxicity data for 3 species which belonged to 2 taxonomic groups (fish and crustacea).

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value $\div 200$ = 24 µg/L $\div 200$ = 0.12 \approx 0.1 µg/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine

There were only toxicity data for 1 species, a crustacean.

Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value \div 1000
	=	1230 μg/L ÷ 1000
	=	1.23 µg/L

This was rounded off to $1 \ \mu g/L$

LR (ECL) TV = $1 \mu g/L$

2-monochlorophenol [CAS No. 95-57-8] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

10700	20472.7	3	8674.24	13458.27	5235.81
6900	170000		50000	70000	67970
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	3351 4944 6273 8673			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR for this chemical.

MR TV (HC1 50%) = $3351 \div 10 = 335.1 \approx 340 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the HC5 50% failed to protect *D. magna* from chronic toxicity.

The other levels of protection are:

99% 335.1	95% 494.4	90% 627.3	80% 867.3
These were rou	inded off to		
340	490	630	870 μg/L

Marine Fails HR and MR

There were only acute toxicity data for 2 marine species which both belonged to 1 taxonomic group — fish. Therefore, the data meets the minimum data requirements of a LR (ECL) TV.

LR (ECL) TV = lowest value \div 1000 = 6290 \div 1000 = 6.3µg/L

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

MR TV (HC1 50%) = $3351 \div 10 = 335.1 \approx 340 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because 2-chlorophenol can bioaccumulate.

The other levels of protection are:

99% 335.1	95% 494.4	90% 627.3	80% 867.3
These were rounded of	'f to		
340	490	630	870 μg/L

3-monochlorophenol [CAS No. 108-43-0] Freshwater Fails Hr and MR

There were only acute toxicity data for 2 species, a fish and a green alga.

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	4,500 μg/L ÷ 1000
	=	4.5 μg/L

Marine

There were only acute toxicity data for 1 species, a fish.

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	3990 μg/L ÷ 1000
	=	3.99 μg/L

This was rounded up to 4 μ g/L

 $LR (ECL) TV = 4 \mu g/L$

4-monochlorophenol [CAS No. 106-48-9] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

4900 3471.31	7836.75 12856	5	3800 29000	1910 9005.76	4642.09 36680	9000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1569 2245 2764 3631				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 5.74. The HC5 50% figure did not provide adequate protection from chronic toxicity to fish and invertebrates. As the first approach is to use the default ACR (given that there is a degree of uncertainty about ACRs). The resultant HC5 50% figure provided adequate protection from chronic toxicity.

MR TV = $2245 \div 10 = 224.5 = 220 \,\mu g/L$

The other levels of protection are:

99% 156.9	95% 224.5	90% 276.4	80% 363.1
These were rounded of	f to		
160	220	280	360 μg/L

Marine Fails HR and MR

There were chronic toxicity data for only 2 species, which belonged to 2 taxonomic groups (green alga and diatom). There were acute toxicity data for 2 species that belonged to 1 taxonomic group (fish).

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 1286 µg/L \div 1000 = 1.3 µg/L However, the freshwater TV was of higher quality than this and should therefore be adopted for marine waters.

LR TV = $2245 \div 10 = 224.5 = 220 \,\mu g/L$

The other levels of protection are:

99% 156.9	95% 224.5	90% 276.4	80% 363.1
These were round	ed off to		
160	220	280	360 µg/L

2,3-dichlorophenol [CAS No. 576-24-9] Freshwater Fails HR and MR

There were only chronic toxicity data for 1 species, an alga. There were only acute toxicity data for 2 species that belonged to 2 taxonomic groups (fish and crustacea).

:. Only a LR (interim) TV could be derived.

LR (interim) TV	=	lowest value ÷ 100
	=	3100 μg/L ÷ 100
	=	31 µg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 1 species, a fish.

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	4380 μg/L ÷ 1000
	=	4.4 μg/L

However, the freshwater TV was of higher quality than this and should therefore be adopted for marine waters.

 $LR TV = 31 \ \mu g/L$

2,4-dichlorophenol [CAS No. 120-83-2] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

6300	2000	2600	8079.75	1911.54	2500
9200	11500	38644.88	15000		

HC1 50% = 1172

HC5 50%	=	1644
HC10 50%	=	2022
HC20 50%	=	2680

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR for this chemical.

MR TV (HC1 50%) = $1172 \div 10 = 117.2 = 120 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the TV did not provide adequate protection for some of the species from chronic toxicity.

The other levels of protection are:

99% 117.2	95% 164.4	90% 202.2	80% 268
These were rounded of	f to		
120	160	200	$270 \; \mu g/L$

Marine Fails HR and MR

There were chronic toxicity data for 1 species that belonged to 1 taxonomic group (diatom). There were only acute toxicity data for 2 species that belonged to 1 taxonomic group (fish).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	815 μg/L ÷ 1000
	=	0.815 μg/L

However, the freshwater TV was of higher quality than this and should therefore be adopted for marine waters.

LR TV (HC1 50%) = $120 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the TV did not provide adequate protection to some of the chronic toxicity data.

The other levels of protection are:

99% 117.2	95% 164.4	90% 202.2	80% 268
These were rounded off	fto		
120	160	200	270 µg/L

2,5-dichlorophenol [CAS No. 583-78-8] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species which belonged to two taxonomic groups (fish & protozoa).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 3300 µg/L \div 1000 = 3.3 µg/L \approx 3 µg/L

Marine Fails HR and MR

There were acute toxicity data for 1 species, a fish.

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	3290 μg/L ÷ 1000
	=	3.29 µg/L
	*	3 µg/L

2,6-dichlorphenol [CAS No. 87-65-0] Freshwater Fails HR and MR

There were chronic toxicity data for 2 species that belonged to 1 taxonomic group (green alga). There were only acute toxicity data for 2 species that belonged to 2 taxonomic groups (fish and crustacea). By combining the data there were values for 4 species that belonged to 3 taxonomic groups (fish, crustacea and green alga).

:. Only a LR (interim) TV could be derived.

LR (interim) TV	=	lowest value ÷ 100
	=	3400 μg/L ÷ 100
	=	34 µg/L

Marine Fails Hr and MR

There were acute toxicity data for 1 species, a fish.

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	5400 μg/L ÷ 1000
	=	5.4 µg/L
	~	5 μg/L

However, the freshwater TV was of higher quality than this and should therefore be adopted for marine waters.

 $LR TV = 34 \mu g/L$

3,4-dichlorophenol [CAS No. 95-77-2] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, a fish and a green alga \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 1900 µg/L \div 1000 = 1.9 µg/L \approx 2 µg/L

Marine

There were acute toxicity data for only 1 species, a fish

 \therefore Only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 2300 µg/L \div 1000 = 2.3 µg/L \approx 2 µg/L

3,5-dichlorophenol [CAS No. 591-35-5] Freshwater Fails HR and MR

There were acute toxicity data for 1 species that belonged to 1 taxonomic group — a fish. There were chronic toxicity data for 2 species that belonged to 1 taxonomic group — green alga. By combining the data there were toxicity data for 3 species which belonged to 2 different taxonomic groups (fish and green alga).

:. Only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 2000
	=	890 μg/L ÷ 200
	=	4.5 μg/L

Which was rounded down to 4 μ g/L

 $LR (ECL) TV = 4 \mu g/L$.

Marine Fails HR and MR

There were only acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	3500 μg/L ÷ 1000
	=	3.5
	*	4 µg/L

2,3,4-trichlorophenol [CAS No. 15950-66-0] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species, a fish and there were only chronic toxicity data for 1 species — a green alga.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 1100 µg/L \div 1000 = 1.1 \approx 1 µg/L

Marine

There were acute toxicity data for only 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 4310 µg/L \div 1000 = 4.3 4 µg/L

2,3,5-trichlorophenol [CAS No. 933-78-8] Freshwater Fails HR and MR

There were no toxicity data for freshwater species. Therefore the marine LR (ECL) TV was adopted for freshwater.

 $LR (ECL) TV = 2 \mu g/L$

Marine

There were only acute toxicity data for 1 species, a fish

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 2310 µg/L \div 1000 = 2.3 \approx 2 µg/L

2,3,6-trichlorophenol [CAS No. 933-75-5] Freshwater Fails HR and MR

There were no toxicity data for freshwater species. Therefore the marine LR (ECL) TV was adopted for freshwater.

 $LR (ECL) TV = 2 \mu g/L$

Marine

There were only acute toxicity data for 2 species, both of which were fish

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value \div 1000
	=	2130 μg/L ÷ 1000
	=	2.1 μg/L
	~	2 μg/L

2,4,5-trichlorophenol [CAS No. 95-95-4] Freshwater Fails HR and MR

There were acute toxicity data for 5 species from 2 taxonomic groups, 4 fish and a crustacean. Only one chronic data point was available (361 μ g/L NOEC growth for *P. promelas*) but this was not used.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 450 µg/L \div 1000 = 0.45 µg/L This was rounded off to 0.5 µg/L

Marine

There were acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 4010 µg/L \div 1000 = 4 µg/L

2,4,6-trichlorophenol [CAS No. 88-06-2] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

643.43	2220.13	1768.94	362.22	646.75	5466.14
779.33	5500	10000	5600	3500	1200
3990					

HC1 50%	=	26.29
HC5 50%	=	179.78
HC10 50%	=	411.46
HC20 50%	=	941.7

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR There was no ACR.

MR TV (HC1 50%) = $26.29 \div 10 = 2.269 \approx 3 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because 2,4,6-trichlorophenol can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
2.629	17.98	41.15	94.17
These were rou	inded off to		
3	20	40	95 μg/L
5	20	10	<i>γ</i> 5 μ <u>5</u> Ε

Marine Fails HR and MR

There were acute toxicity data for 3 species that belonged to 2 taxonomic groups (fish and crustacea) and there was chronic toxicity data for 1 species — a diatom.

Therefore a LR (interim) TV could be derived.

LR (interim) TV = lowest value \div 100 = 1400 \div 100 = 14 µg/L

However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

LR TV (HC1 50%) = $3 \mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because 2,4,6-trichlorophenol can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
2.629	17.98	41.15	94.17
These were rour	ded off to		

These were rounded off to

3 20 40 95 μg/L

2,3,4,5-tetrachlorophenol [CAS No. 4901-51-3] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, both of which were fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 205 µg/L \div 1000 = 0.2 µg/L

Marine

There were acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 1500 µg/L \div 1000 = 1.5 µg/L

This was rounded off to 2 μ g/L

2, 3, 4, 6-tetrachlorophenol [CAS No. 58-90-2] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

140	620	1030	750	334.96
300	690	650	10100	1300
= 112.6				
= 177.0				
= 226.4				
= 308.8				
	= 112.6 = 177.0 = 226.4	300 690 = 112.6 = 177.0 = 226.4	300 690 650 = 112.6 = 177.0 = 226.4	300 690 650 10100 = 112.6 = 177.0 = 226.4

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 2.05.

MR TV (HC1 50%) = $112.6 \div 2.05 = 54.927 = 55 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
54.92682927	86.34146341	110.4390244	150.6341463

However, this TV did not provide sufficient protection. Therefore, a default AF of 10 was used rather than the ACR.

MR TV (HC1 50%) = $112.6 \div 10 = 11.26 = 11 \,\mu\text{g/L}$

The other levels of protection are:

99% 11.26	95% 17.7	90% 22.64	80% 30.88
These were rounded of	f to		
10	20	25	30 µg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 3 species which belonged to 3 taxonomic groups (fish, crustacea and mollusca).

Therefore a LR (ECL) TV could be derived.

LR (interim) $TV =$	lowes	st value ÷ 1000
	=	$1100 \div 1000$
	=	1.1 µg/L

However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

LR TV (HC1 50%) = $11 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because 2,3,4,6-terachlorophenol can bioaccumulate.

The other levels of protection are:

99% 11.26	95% 17.7	90% 22.64	80% 30.88
These were rounded of	f to		
10	20	25	30 µg/L

2,3,5,6-tetrachlorophenol [CAS No. 935-95-5] Freshwater Fails HR and MR

There were only acute toxicity data for 2 species, 1 fish, 1 crustacean while there were chronic toxicity data for 1 species, a protozoan.

Therefore only a LR (ECL) TV could be derived.

LR (ECL)	=	lowest value ÷ 1000
	=	170 μg/L ÷ 1000
	=	0.17 µg/L
	~	0.2 µg/L

Marine

There were only acute toxicity data for 3 species, 2 fish and a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	$1390 \div 1000$
	=	1.390
	~	1.4 μg/L

Pentachlorophenol [CAS No. 87-86-5] Freshwater HR Calculations

The data used to derive a HR TV were:

41 50	271 94.87		44.9 144.19		100 20	250 89.44	50
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	14.56 24.07 30.94 41.67					
HR TV (HC1 50)%)	=	14.56	=	15 µg/L		

The HC1 50% was adopted for slight to moderately modified ecosystem protection because pentachlorophenol can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
14.56	24.07	30.94	41.67

However, the above TV was not used as it did not provide adequate protection for even acute toxicity data. Therefore, the MR TV was calculated, given that there was a much larger acute data set.

MR Calculation

The aqueous solubility of pentachlorophenol is 14mg/L. Therefore the maximum concentration for toxicity data to be included in the calculation of the TV is 28 000 μ g/L.

The data used to derive the TV were:

71.75	513.81	511.40	145.54	87	85
482.49	39.47	45	393.32	331.31	68.59
211.18	449.12	84.36	38	603.76	202.37
93.38	284.55	45.91	247.89	797.76	217.30
103.54	54	761.58	70	202.74	253.55
812.16	440	1500	410.24	649.73	701.43
317.49	391.85	700	520	220	68
220.14	170	1521.18	110	250.55	380
1260	1210	149.31	258.07	144.57	492.95
547.72	192.65	172.07	387.64	562.10	1111.06
730	130	489.9	300.33	90	80
183	310	300	100	208.49	260
400	3200	3265.15	9822.56	7200	5900

11000	7000		10 300	21865.86
HC1 50%	=	16.40		
HC5 50%	=	47.18		
HC10 50%	=	75.09		
HC20 50%	=	122.2		

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 4.54.

MR TV (HC1 50%) = $16.40 \div 4.54 = 3.61 = 3.6 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because pentachlorophenol can bioaccumulate and the HC5 50% did not provide an adequate margin of safety for fish acute toxicity.

The other levels of protection are:

99%	95%	90%	80%
3.612	10.392	16.540	26.916

These were rounded off to

3.6 10 17 27 μg/L

Marine Fails HR MR Calculations

The data used to derive the TV were:

272.03 4804.98 141.53 163 2100	450 82 7500 482 785.94		728.90 10000 6145.20 18000 5500	172.51 3300 184.39 642.52 3600	1495.71 371 1200 67 3000	450 541.74 344 1039.28
HC1 50% HC5 50% HC10 50% HC20 50%	= = = =	51.24 101.16 148.90 245.9		5000	5000	

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV is derived using acute toxicity data it is a MRTV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 4.54.

MR TV (HC1 50%) = $51.24 \div 4.54 = 11.286 = 11.3 \,\mu\text{g/L}$

The other levels of protection are:

99% 11.28634361	95% 22.28193833	90% 32.79735683	80% 54.16299559
These were rounded of	f to		
11	22	33	55 µg/L

2-nitrophenol [CAS No. 88-75-5] Freshwater Fails HR and MR

There were acute toxicity data for 3 species which belonged to 2 taxonomic groups: fish and crustacea.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	1600 μg/L ÷ 1000
	=	1.6 μg/L
	~	2 µg/L

Marine

There were only acute toxicity data for 2 species which belonged to 2 taxonomic groups — fish and crustacea.

Therefore only a LR (interim) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	2100 μg/L ÷ 1000
	=	2.1 μg/L
		2 µg/L

3-nitrophenol [CAS No. 554-84-7] Freshwater Fails HR and MR

There were acute toxicity data for 1 species, a fish.

Therefore only a LR (interim) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	1300 μg/L ÷ 1000
	=	1.3 μg/L
	~	1 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $1 \mu g/L$

4-nitrophenol [CAS No. 100-02-7] Freshwater Fails HR and MR

There were chronic toxicity data for 3 species that belong to 3 taxonomic groups (fish, crustacea and green alga). There were acute toxicity data for 13 species that belong to 3 taxonomic groups (fish, crustacea and green algae).

Therefore a LR (interim) TV can be derived.

LR (interim) TV = lowest value $\div 20$ = 1160 $\div 20$ = 58 μ g/L

Marine Fails HR and MR

There were only chronic toxicity data for 1 species — a fish. There were only acute toxicity data for 5 species that belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived. LR (ECL) TV = lowest value $\div 1000$ = 2700 $\div 1000$ = 2.7 µg/L

However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

 $LR TV = 58 \mu g/L$

2,4-dinitrophenol [CAS No. 51-28-5] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

23000	550	6867.36	520	5065.98	1568.88	1165.59
2019.12	11432.49	4394.43	3806.99	6490	26000	
HC1 50%	=	131.7				
HC5 50%	=	447.4				
HC10 50%	=	776.0				
HC20 50%	=	1406				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $447.7 \div 10 = 44.74 = 45 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
13.17	44.743	77.602	140.563

These were rounded off to

13 45 80 140 µg/L

Marine Fails HR and MR

There were chronic toxicity data for only 1 species, a fish. There were acute toxicity data for 5 species that belong to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value $\div 1000$ = 200 $\div 1000$ = 0.2 μ g/L

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

MR TV = $447.7 \div 10 = 44.74 = 45 \ \mu g/L$

The other levels of protection are:

99%	95%	90%	80%
13.17	44.743	77.602	140.563

These were rounded off to

13 45 80 140 µg/L

2,4,6-trinitrophenol [CAS No. 88-89-1] Freshwater Fails HR and MR

There were chronic toxicity data for 3 species that belonged to 2 taxonomic groups (crustacea and green alga). There were acute toxicity data for 5 species that belonged to 3 taxonomic groups (fish, crustacea and green alga).

Therefore only a LR (interim) TV could be derived. An Assessment factor of 20 was used as the lowest datum point was chronic.

LR (interim) TV = lowest value $\div 20$ = 5000 $\div 20$ = 250 μ g/L

Marine Fails HR and MR

There were only acute toxicity data for 2 species, which belonged to 2 taxonomic groups (fish and mollusca).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value $\div 1000$ = $57050 \div 1000$ = $57 \mu g/L$

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

LR TV = $250 \,\mu g/L$

Carbon disulfide [CAS: 75-15-0] Freshwater Fails HR and MR

There were only acute toxicity data for 3 species, 1 fish, 1 crustacean and 1 alga.

Therefore only a LR (Interim) TV could be derived.

LR (Interim) TV	=	lowest value ÷ 100
	=	2 100 μg/L ÷ 100
	=	21 µg/L
	*	20 µg/L

Marine

There were toxicity data for only 1 marine species. Therefore only a LR (ECL) TV could be derived (would give a value of 65 (65000/1000)). However, the freshwater LR (interim) TV was of higher quality and was therefore adopted as the LR TV for marine waters.

Therefore LR TV = $20 \,\mu g/L$

N-propylsufide [CAS: 111-47-7] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species - a fish

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 21700 µg/L \div 1000 = 21.7 µg/L

Which was rounded down to 20 $\mu\text{g/L}$

LR (ECL) TV = $20 \ \mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = 20 μ g/L

Propyl disulfide [CAS: 629-19-6] Freshwater Fails HR and MR

There were acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000

 $= 2620 \ \mu g/L \div 1000 \\ = 2.62 \ \mu g/L \\ = 2.6 \ \mu g/L \\ \approx 3 \ \mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $3 \mu g/L$

Isopropyl disulfide [CAS: 4253-89-8] Freshwater Fails HR and MR

There were acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	8310 μg/L ÷ 1000
	=	8.31 μg/L

This was rounded off to 8 μ g/L.

 $LR (ECL) TV = 8 \mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $8 \mu g/L$

tert-butyl sulfide [CAS: 107-47-1] Freshwater Fails HR and MR

There were acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 29,100 µg/L \div 1000 = 29.1 µg/L = 29 µg/L \approx 30 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $30 \,\mu g/L$

Phenyldisufide [CAS 882-33-7] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species, a fish

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 110 µg/L \div 1000 = 0.11 µg/L

Which was rounded up to 0.1 μ g/L

LR (ECL) TV = $0.1 \,\mu g/L$

Marine

There ware no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters. LR (ECL) TV = $0.1 \,\mu\text{g/L}$

Bis(dimethylthiocarbamyl)sulfide [CAS: 97-74-5] Freshwater Fails HR and MR

There were no chronic toxicity data and only acute data for 3 species, which belonged to 3 taxonomic groups (fish, crustacea and green alga).

Therefore only a LR (interim) TV could be derived.

LR (interim) TV = lowest value \div 100 = 1000 µg/L \div 100 = 10 µg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore the freshwater LR (interim) TV was adopted for marine waters.

 $LR TV = 10 \mu g/L$

Bis(diethylthiocarbamyl)disulfide [CAS: 97-77-8] Freshwater Fails HR and MR

There were no chronic toxicity data and only acute data for 3 species, which belonged to 3 taxonomic groups (fish, crustacea and green alga, i.e. OECD MPD). The data used to derive the TV for this chemical are not in the database. Therefore, the data from the database should not be used to derive any site-specific TVs or to recalculate TVs as more data becomes available. The data used to derive the TV were obtained from AQUIRE but may not have been sufficiently screened. Hence, only a low reliability TV could be calculated, as an interim indicative working level. Therefore only a LR (interim) TV could be derived.

LR (interim) TV = lowest value \div 100 = 120 µg/L \div 100 = 1 µg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore the freshwater LR (interim) TV was adopted for marine waters.

LR TV = $1 \mu g/L$

2-methoxy-4H-1,3,2-benzodioxaphosphorium-2-sulfide [CAS: 3811-49-2] Freshwater Fails HR and MR

There were only acute toxicity data for 5 species, which belonged to 2 taxonomic groups (fish and mollusca).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	2000 μg/L ÷ 1000
	=	2 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $2 \mu g/L$

Potassium amyl xanthate Freshwater Fails HR and MR

A compilation of toxicity data by Hawley (1977) came very late during the derivation process and it was not possible to obtain the original references before the guidelines were completed. Some of the values reported by Hawley (1977) were much lower than the screened figures that are in the database. For this reason it was considered appropriate to base the ECL figures on median values of the lowest unpublished ranges reported by Hawley (1977). The median of the values from Hawley (1977) for sodium ethyl xanthate was 500 μ g/L.

There were no chronic data and only acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	500 μg/L ÷ 1000
	=	0.5 µg/L

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater ECL was adopted for marine waters.

LR (ECL) TV = $0.5 \,\mu g/L$

Potassium ethyl xanthate [CAS No. 140-89-6] Freshwater Fails HR and MR

A compilation of toxicity data by Hawley (1977) came very late during the derivation process and it was not possible to obtain the original references before the guidelines were completed. Some of the values reported by Hawley (1977) were much lower than the screened figures that are in the database. For this reason it was considered appropriate to base the ECL figures on median values of the lowest unpublished ranges reported by Hawley (1977). The median of the values from Hawley (1977) for sodium ethyl xanthate was 50 μ g/L.

There were no chronic data and only acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 50 µg/L \div 1000 = 0.05 µg/L

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater ECL was adopted for marine waters.

 $LR (ECL) TV = 0.05 \ \mu g/L$

Potassium hexyl xanthate [CAS No. 2720-76-5] Freshwater Fails HR and MR

A compilation of toxicity data by Hawley (1977) came very late during the derivation process and it was not possible to obtain the original references before the guidelines were completed. Some of the values reported by Hawley (1977) were much lower than the screened figures that are in the database. For this reason it was considered appropriate to base the ECL figures on median values of the lowest unpublished ranges reported by Hawley (1977). The median of the values from Hawley (1977) for sodium ethyl xanthate was 450 000 μ g/L.

There were no chronic data and only acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	450 000 ÷ 1000
	=	450 μg/L
	≈	500 μg/L

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater ECL was adopted for marine waters.

LR (ECL) TV = $500 \,\mu g/L$

Potassium isopropyl xanthate [CAS No. 140-92-1] Freshwater Fails HR and MR

A compilation of toxicity data by Hawley (1977) came very late during the derivation process and it was not possible to obtain the original references before the guidelines were completed. Some of the values reported by Hawley (1977) were much lower than the screened figures that are in the database. For this reason it was considered appropriate to base the ECL figures on median values of the lowest unpublished ranges reported by Hawley (1977). The median of the values from Hawley (1977) for sodium ethyl xanthate was 14 000 μ g/L.

There were no chronic data and only acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 14 000 \div 1000 = 14 µg/L \approx 15 µg/L

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater ECL was adopted for marine waters.

LR (ECL) TV = 15 μ g/L

Sodium ethyl xanthate [CAS No. 140-90-9] Freshwater Fails HR and MR

A compilation of toxicity data by Hawley (1977) came very late during the derivation process and it was not possible to obtain the original references before the guidelines were completed. Some of the values reported by Hawley (1977) were much lower than the screened figures that are in the database. For this reason it was considered appropriate to base the ECL figures on median values of the lowest unpublished ranges reported by Hawley (1977). The median of the values from Hawley (1977) for sodium ethyl xanthate was 50 μ g/L.

There were no chronic data and only acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 50 µg/L \div 1000 = 0.05 µg/L

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater ECL was adopted for marine waters.

 $LR (ECL) TV = 0.05 \ \mu g/L$

Sodium iso-butyl xanthate [CAS No. 2530-75-6] Freshwater Fails HR and MR

A compilation of toxicity data by Hawley (1977) came very late during the derivation process and it was not possible to obtain the original references before the guidelines were completed. Some of the values reported by Hawley (1977) were much lower than the screened figures that are in the database. For this reason it was considered appropriate to base the ECL figures on median values of the lowest unpublished ranges reported by Hawley (1977). The median of the values from Hawley (1977) for sodium sec-butyl xanthate was 4700 μ g/L.

There were no chronic toxicity data and only acute toxicity data for 2 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 4700 µg/L \div 1000 = 4.7 \approx 5 µg/L

Marine Fails HR and MR

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $5 \mu g/L$

Sodium isopropylxanthate [CAS No. 140-93-2] Freshwater Fails HR and MR

A compilation of toxicity data by Hawley (1977) came very late during the derivation process and it was not possible to obtain the original references before the guidelines were completed. Some of the values reported by Hawley (1977) were much lower than the screened figures that are in the database. For this reason it was considered appropriate to base the ECL figures on median values of the lowest unpublished ranges reported by Hawley (1977). The median of the values from Hawley (1977) for sodium isopropyl xanthate was 50 μ g/L.

There were no chronic toxicity data and only acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 50 µg/L \div 1000 = 0.05 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.05 \,\mu g/L$

Sodium sec-butyl xanthate [CAS No. 36551-21-0] Freshwater Fails HR and MR

A compilation of toxicity data by Hawley (1977) came very late during the derivation process and it was not possible to obtain the original references before the guidelines were completed. Some of the values reported by Hawley (1977) were much lower than the screened figures that are in the database. For this reason it was considered appropriate to base the ECL figures on median values of the lowest unpublished ranges reported by Hawley (1977). The median of the values from Hawley (1977) for sodium sec-butyl xanthate was 4700 μ g/L.

There were no chronic toxicity data and only acute toxicity data for 2 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 4700 µg/L \div 1000 = 4.7 \approx 5 µg/L

Marine Fails HR and MR

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = 5 μ g/L

Dimethylphthalate [CAS No. 131-11-3] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

50000	56000	68694.98	45900	377000	142000

HC1 50%	=	30417
HC5 50%	=	37461
HC10 50%	=	42554
HC20 50%	=	50616

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and was divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $37461 \div 10 = 3746.1 = 3750 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
3041.7	3746.1	4255.4	5061.6
T	1 1 00		

These were rounded off to

3000	3700	4300	5100 μg/L
2000	2100	1000	0 1 0 0 <i>p</i> tB E

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 2 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 29 000 µg/L \div 1000 = 29 µg/L

However, the freshwater TV was of higher quality and was therefore adopted for marine waters.

LR TV = $3750 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
3041.7	3746.1	4255.4	5061.6
These were rounded off	fto		
3000	3700	4300	5100 μg/L

Diethylphthalate [CAS No. 84-66-2] Freshwater Fails HR MR Calculations

16700	12000	16899.70	86000	13100	16000
HC1 50%	=	8984			
HC5 50%	=	10440			
HC10 50%	=	11445			
HC20 50%	=	12970			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $10440 \div 10 = 1044 = 1050 \,\mu g/L$

The other levels of protection are:

99% 898.4	95% 1044	90% 1144.5	80% 1297
These were rou	inded off to		
900	1000	1100	1300 μg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 2 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	2900 μg/L ÷ 1000
	=	2.9 μg/L

However, the freshwater TV was of higher quality and therefore was adopted for marine waters.

LR TV = 1050 μ g/L

However, this TV did not provide adequate protection to the most sensitive acute toxicity data. Therefore, the HC1 50% TV was adopted.

 $LR TV = 900 \mu g/L$

The other levels of protection are:

99% 898.4	95% 1044	90% 1144.5	80% 1297
These were ro	unded off to		
900	1000	1100	1300 µg/L

Dibutylphthalate [CAS No. 84-74-2] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

480	1600	1190.29	2940	6290	400

Because toxicity data were limited to less than eight species, the Burr Type III distribution was applied with caution (as per the directions in the BurrliOZ software section of the 'TOX-Read Me' File on the CD-ROM and Internet site). The fit of the log-logistic and the selected Burr Type III distributions to

the data were compared. This showed that the log-logistic distribution fitted the data better than the selected Burr Type III distribution. Therefore, the Trigger Value and other levels of protection were calculated using the log-logistic distribution.

HC1 50%	=	91.97
HC5 50%	=	241.54
HC10 50%	=	373.46
HC20 50%	=	600.13

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for crustaceans was 9.29.

MR TV (HC1 50%) = 91.97 \div 9.29 = 9.89 = 10 µg/L

The HC1 50% was adopted for slight to moderately modified ecosystem protection because dibutylphthalate can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
9.89	26.0	40.2	64.59
These were rounded of	f to		

10 26 40	65 μg/L
----------	---------

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 1 species, which was a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 500 µg/L \div 1000 = 0.5 µg/L

However, the freshwater TV was of higher quality and was therefore adopted for marine waters.

LR TV (HC1 50%) = $26 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
26.16361679	37.3196986	46.39397201	62.36813778

These were rounded off to

25 35 45 60 μg/L

Bis(2-ethylhexyl)phthalate [CAS No. 117-81-7] Freshwater Fails Hr and MR

There were chronic toxicity data for 1 species, a fish. There were only acute toxicity data for 3 species, 1 fish, 1 crustacean and 1 green alga. Quite some number of the toxicity data exceeded twice reliable literature values for the aqueous solubility of this chemical. The highest concentration toxicity datum used to derive the TV was 610.

Therefore only a LR (Interim) TV could be derived. LR (Interim) TV = lowest value \div 100 = 133 µg/L \div 100 = 1.3 µg/L \approx 1 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (interim) TV was adopted for marine waters.

Therefore LR TV	=	1 μg/L
-----------------	---	--------

Acetonitrile [CAS No. 75-05-8] Freshwater Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 1 species.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest acute value \div 1000 = 160 000 µg/L \div 1000 = 160 µg/L

Marine

There were no marine toxicity data for this chemical. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

 $LR (ECL) TV = 160 \mu g/L$

Acrylonitrile [CAS No. 107-13-1] Freshwater Fails HR and MR

There were no chronic toxicity data. There were only acute toxicity data for 9 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 7600 µg/L \div 1000 = 7.6 µg/L

Which was rounded up to 8 μ g/L

 $LR (ECL) TV = 8 \mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = 8 μ g/L

Poly(acrylonitrile-co-butadiene-co-styrene) [CAS No. 9003-56-9] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

13900 34484.25 29786.39	14215.10 7600 8717.80	19364.92 32000 34200	19500 12804.75 7883.74	19933.11 34000
HC1 50%	=	2026.74		
HC5 50%	=	5259.74		
HC10 50%	=	7931.14		
HC20 50%	=	11961.35		

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (crustaceans) was 10.

MR TV = $5259.74 \div 10 = 525.97 = 525 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
202.674	525.97	793.114	1196.135

These were rounded off to

200 000 1200 µg E	200	530	800	1200 µg/L
-------------------	-----	-----	-----	-----------

Marine Fails HR MR Calculations

The data used to derive the TV were:

2900	3349.63	3546.83	6855.65	13057.56	20000
3098.39	6993.57	11618.95	14124.45	3200	3400
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1963.62 2461.12 2825.88 3410.69			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (crustaceans) was 10.

MR TV = $2461.12 \div 10 = 246.1 = 245 \,\mu g/L$

 99%
 95%
 90%
 80%

 196.362
 246.112
 282.588
 341.069

 These were rounded off to
 200
 250
 280
 340 μg/L

Dimethylformamide [CAS No. 68-12-2] Freshwater Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 9 species belonging to 3 different taxonomic groups (fish, crustacea and insects).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	1000000 μg/L ÷ 1000
	=	1000 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $1000 \,\mu g/L$

1,2-diphenylhydrazine [CAS No. 122-66-7] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species, a crustacean

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 2180 µg/L \div 1000 = 2.2 µg/L \approx 2 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

 $LR (ECL) TV = 2 \mu g/L$

Diphenylnitrosamine [CAS No. 86-30-6] Freshwater Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 2 species, a fish and a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 5800 µg/L \div 1000 = 5.8 µg/L \approx 6 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $6 \mu g/L$

Hexachlorobutadiene [CAS No. 87-68-3] Freshwater Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 1 species, a fish. There was an unscreened chronic toxicity value of 9.3 μ g/L for *Pimephales promelas* that was cited in the USEPA water quality guidelines of 1980. This datum was used in the calculation of the LR TV but was not included in the database.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value + AF
	=	9.3 μg/L ÷ 200
	=	0.04 µg/L

An AF of 200 was used as the lowest toxicity value was chronic.

Marine Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 2 species, a fish and a crustacean. There was an unscreened acute toxicity value of $32\mu g/L$ for *Pimephales promelas* that was cited in the USEPA water quality guidelines of 1980. This datum was used in the calculation of the LR TV but was not included in the database.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 32 µg/L \div 1000 = 0.03 µg/L

Hexachlorocyclopentadiene [CAS No. 77-47-4] Freshwater Fails HR and MR

There was only chronic toxicity datum for 1 species (crustacea) and acute data for 1 species (green alga).

Therefore only a LR (ECL) TV could be derived. An AF of 200 was used as the lowest toxicity value was chronic).

LR (ECL) TV = lowest value \div 200 = 9 μ g/L \div 200 = 0.045 μ g/L

Which was rounded up to 0.05 μ g/L

LR (ECL) TV = $0.05 \ \mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.05 \,\mu g/L$

Isophorone [CAS No. 78-59-1] Freshwater Fails HR an MR

There were no chronic toxicity data and only acute toxicity data for 3 species, 2 fish and 1 crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	120 000 μg/L ÷ 1000
	=	120 µg/L

Marine

There were no chronic toxicity data and only acute toxicity data for 3 species, a fish, a crustacean and a diatom.

Therefore only a LR (interim) TV could be derived.

LR (interim) TV	=	lowest value ÷ 100
	=	12 900 ÷ 100
	=	129 μg/L

This was rounded off to 130 $\mu g/L.$

Therefore LR (interim) TV = $130 \,\mu g/L$

Aldrin [CAS No. 309-00-2] Freshwater Fails HR and MR

The available toxicity data included much data that were above the aqueous solubility cut-off of 20 μ g/L (ie. twice reliable literature aqueous solubility values). When these data were removed the remaining data no longer meet the minimum requirements of the Burr Type III method and therefore this method could not be used.

There were no chronic data but there was acute toxicity data for 19 species of fish, 11 crustaceans, 6 insects, 1 mollusc and 2 amphibians.

Therefore only a LR (interim) TV could be derived. This could be done as it is a pesticide and not very toxic to plants.

LR (interim) TV = lowest value \div 100 = 0.097 \div 100 = 0.001 µg/L

Marine Fails HR and MR

There were chronic toxicity data for 2 species, which belonged to 2 taxonomic groups (fish and mollusca). There were acute toxicity data for 11 species, which belonged to 3 taxonomic groups (fish, crustacea and mollusca).

Therefore only a LR (interim) TV could be derived. This could be done as it is a pesticide and not very toxic to plants.

LR (interim) TV = lowest value \div 100 = 0.32 \div 100 = 0.003 μ g/L

Chlordane [CAS No. 12789-03-6] Freshwater Fails HR MR Calculations

There was a marked outlier in the dataset (ie. the value of 9731). This data point was removed and the TV calculated using the data below:

27 50.89 9.6 40 63.2 1250	12 3 45.33 37.82 20.94 1414.21		14.49 11.8 11.05 50 20.76 360	7.21 24.92 60.85 10.64 530.71 17	6.37 14.49 46.43 4.8 970.37 6.4	108.15 19.86 27.23 0.4 1440
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.85 2.48 4.24 8.02				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 29.88.

MR TV (HC1 50%) = $0.85 \div 29.88 = 0.028 = 0.03 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because Chlordane can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
0.028	0.083	0.142	0.268

These were rounded off to

0.03 0.08 0.14 0.27 µg/L

Marine Fails HR and MR

There were chronic toxicity data for 2 species — a fish and a crustacean. There were only acute data for 12 species, which belonged to 3 taxonomic groups (fish, crustacea and mollusca).

Therefore only a LR (interim) TV could be derived. This could be done as it is a pesticide and not very toxic to plants (ie. Low algal toxicity assumed). An assessment factor of 20 was used as the lowest toxicity value was chronic.

LR (interim) TV = lowest value $\div 20$ = 0.015 $\div 20$ = 0.00075 μ g/L \approx 0.001 μ g/L

The freshwater TV was of higher quality than this and should normally have been adopted for marine waters.

LR TV (HC1 50%) = $0.85 \div 29.88 = 0.028 = 0.03 \,\mu g/L$

The HC1 50% would have been adopted for slight to moderately modified ecosystem protection because Chlordane can bioaccumulate.

The other levels of protection would be:

99%	95%	90%	80%
0.028	0.083	0.142	0.268

These were rounded off to

0.03 0.08 0.14 0.27 µg/L

However, neither the HC5 50% TV nor the HC1 50% TV provided adequate protection to 1 out of 2 species for which there was chronic toxicity data. Therefore the marine LR (interim) TV was adopted.

LR (interim) TV = $0.001 \,\mu g/L$

DDE [CAS No. 72-55-9] Freshwater Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 4 species, which belonged to 2 taxonomic groups (fish and platyhelmenthes).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	32 μg/L ÷ 1000
	=	0.032 μg/L

This was rounded down to 0.03 μ g/L.

Therefore LR (ECL) TV = $0.03 \,\mu g/L$

Marine

There were chronic toxicity data for 1 species a crustacean. There were acute toxicity data for 3 species, which belong to 2 taxonomic groups (crustacea and mollusca).

Therefore only a LR (ECL) TV could be derived. An AF of 200 was used as the lowest toxicity value was chronic.

LR (ECL) TV	=	lowest value ÷ 200
	=	0.1 μg/L ÷200
	=	0.0005 µg/L

DDT [CAS No. 50-29-3] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

14.16	122.8		16.85	3.97	38.68	2.31
13.87	34.10		4.95	12.78	8.89	6.00
8.66	1.53		3.93	15.56	7.22	11.5
40.59	2.84		18.94	5.60	1.8	1.8
3.65	2.9		10.67	123.29	15.56	4.16
945.46	1.04		15	0.88	0.84	1.66
2.08	5.35		3.76	74.98	28	2.65
5.8	59.53		17	7.4	23	1
3.5	1.2		1.2	20	32	1.5
1.9	134.76		1.6	30	3162.41	6400
2277	8700		20845	15000	4624.93	6400
HC1 50% HC5 50% HC10 50% HC20 50%	= = = =	0.41 0.87 1.37 2.55				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 70.85.

MR TV (HC1 50%) = $0.41 \div 70.85 = 0.00578 = 0.006 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because DDT can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
0.00578	0.0123	0.0193	0.0360

These were rounded off to

	0.006	0.01	0.02	0.04 µg/L
--	-------	------	------	-----------

Marine Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 20 species that belonged to 3 different taxonomic groups (fish, crustacea and mollusca). As DDT is a pesticide it will most probably be relatively non-toxic to alga. The data therefore, meets the minimum data requirements for the LR (interim) TV.

 $MR (AF) TV = lowest value \div 100 \text{ or } ACR \ge 10$ = 0.26 ÷ (70.85 \ext{s} 10) = 0.0004 \mug/L

Dicofol [CAS No. 115-32-2] Freshwater Fails HR and MR

There were no chronic toxicity data but acute toxicity data for 18 species which belonged to 3 different taxonomic groups (fish, insecta and mollusca).

As dicofol is a pesticide a LR (interim) TV guideline could be derived (because it would be relatively non-toxic to alga).

LR (interim) TV = lowest value \div 100 = 53 µg/L \div 100 = 0.53 µg/L

Which was rounded off to 0.5 $\mu g/L$

Therefore LR (interim) TV = $0.5 \,\mu g/L$.

Marine

There were no chronic toxicity data and only acute toxicity data for 3 species which all were crustaceans.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 138 µg/L \div 1000 = 0.138 \approx 0.1 µg/L

Dieldrin [CAS No. 60-57-1] Freshwater Fails HR and MR

There were no chronic toxicity data. There were toxicity data for 16 species that belonged to 3 taxonomic groups (fish, crustacea and insecta).

As dieldrin is a pesticide a LR (interim) TV guideline could be derived (because it would be relatively non-toxic to alga).

LR (interim) TV	=	lowest value \div (10 x ACR)
	=	0.58 μg/L ÷ (10 x 6.164)
	=	0.0094 μg/L
	~	0.01 µg/L

Marine Fails HR and MR

There were no chronic toxicity data. There were acute toxicity data for 9 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value \div (10x 10 x ACR)
	=	$0.4 \ \mu g/L \div (100 \ x \ 6.164)$
	=	0.0006 µg/L
	~	0.001 µg/L

However, the freshwater LR (interim) TV was of better quality and was therefore adopted for marine waters.

LR (interim) TV = $0.01 \,\mu g/L$

Endosulfan [CAS No. 115-29-7] Freshwater HR calculations

The data used to derive the TV were:

700	100	2.7	0.2	10	20	6.79
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.0288 0.238 0.630 1.842				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV.

HR TV (HC1 50%) = $0.029 = 0.03 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because endosulfan can bioaccumulate and the HC5 50% did not provide adequate protection from even acute toxicity.

99% 0.0288	95% 0.238	90% 0.63	80% 1.842
These were rounded of	f to		
0.03	0.2	0.6	1.8 µg/L
Marine Fails HR MR calculations			

The data used to derive the TV were:

1.3 1.55 0.98 17.38 196.60	1.1 0.6 0.69 65	1.38 2.1 0.24 52.25	1.15 0.14 0.04 15.37	0.3 19 0.28 16.01	0.26 15 17.73 1.96	1.5 0.50 261.08 1082.13	0.1
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.0397 0.0954 0.163 0.339					

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV (HC1 50%) = $0.0397 \div 7.295 = 0.0054 = 0.005 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because endosulfan can bioaccumulate.

The other levels of protection are:

99% 0.005440713	95% 0.01307608	90% 0.022357779	80% 0.046470185
These were rounded of	f to		
0.005	0.01	0.02	$0.05 \ \mu g/L$

Alpha-endosulfan [CAS No. 959-98-8] Freshwater Fails HR and MR

There were no chronic toxicity data. There were acute toxicity data for 4 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	$0.16 \div 1000$
	=	0.00016
	~	0.0002 µg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR TV = $0.0002 \,\mu g/L$

Beta-endosulfan [CAS No. 33213-65-9] Freshwater Fails HR and MR

There were no chronic toxicity data. There were acute toxicity data for 4 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	$6.6 \div 1000$
	=	0.0066 µg/L
	~	0.007 µg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR TV = $0.007 \,\mu g/L$

Endrin [CAS No. 72-20-8] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

0.70 0.45 0.53 1.62 0.35 0.72	0.98 0.57 1.05 1.5 4.6	6.72 0.85 1.2 1.8 0.9	4.30 0.83 0.15 3.7 0.34 2.51	1.58 0.95 1.14 3 0.44	0.55 0.14 0.46 2.95 2.3
0.72 24 12 180	1.22 27.50 10 228.47	0.76 20 56 34	2.51 14.85 18 3178.63	0.40 32.03 10 20	6.34 62 120
HC1 50% HC5 50%	= 0.12 = 0.24				

HC10 50%	=	0.37
HC20 50%	=	0.64

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 5.79.

MR TV (HC1 50%) = $0.12 \div 5.79 = 0.0207 = 0.02 \,\mu g/L$

However, this figure did not provide an adequate margin of safety for acute toxicity to several species and the default ACR of 10 was used instead.

MR TV (HC1 50%) = $0.12 \div 10 = 0.012 = 0.01 \,\mu g/L$

The HC1 50% was adopted because endrin can bioaccumulate.

This TV did not provide adequate protection even against acute toxicity. Therefore the default AF of 10 was used to derive the TV rather than the ACR.

MR TV (HC1 50%) = $0.1236 \div 10 = 0.01236 = 0.01 \, \mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because endrin can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
0.012	0.024	0.037	0.064
These were roun	ded off to		
0.01	0.02	0.04	0.06

Marine Fails HR MR Calculations

The data used to derive the TV were:

0.60 0.31 0.32 15 2.78	0.39 1.29 2.60 2 0.2		0.39 0.48 1.2 1.05 0.04	0.92 0.06 0.63 0.4 65.71	0.40 1.3 3.1 6.38 360	0.30 0.09 0.17 0.65
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.0363 0.0775 0.119 0.2079				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 5.79.

MR TV (HC1 50%) = $0.0363 \div 5.79 = 0.0063 = 0.006 \ \mu g/L$. However, this did not provide an adequate margin of safety for acute toxicity and the default ACR of 10 was used.

MR TV (HC1 50%) = $0.0363 \div 10 = 0.00363 = 0.004 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because endrin can bioaccumulate.

The other levels of protection are:

99% 0.00363	95% 0.00775	90% 0.0119	80% 0.02079
These were roun	ided off to		
0.004	0.008	0.01	0.02 μg/L

Heptachlor [CAS No. 76-44-8] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

63 17.88 44.13 0.9	185 10 39.52 1.1		6.20 13.53 1.97 32.78	161.72 17 1.8	163.71 30.94 53.68	19.55 42 2.8
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.063 0.67 1.87 5.23				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (fish) was 7.5.

MR TV (HC1 50%) = $0.063 \div 7.5$ (ACR) = $0.0084 = 0.01 \mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because heptachlor can bioaccumulate.

The other levels of protection are:

99%	95%	90%	80%
0.0084	0.089	0.249	0.697

These were rounded off to

0.01 0.09 0.25 0.7 µg/L

Marine Fails HR and MR

There was 1 chronic toxicity datum, which was for a crustacean. There were acute toxicity data for 15 species, which belonged to 3 taxonomic groups (fish, crustacea and mollusca).

As heptachlor is a pesticide a LR (interim) TV guideline could be derived (because it would have relatively low toxicity to alga).

LR (interim) TV = lowest value \div (10x ACR) = 0.03 µg/L \div (10 x 7.5) = 0.0004 µg/L

The freshwater TV was of higher quality than the TV for marine waters and would normally be adopted for marine waters. However, it did not provide adequate protection against acute toxicity for 1 species of crustacean and marginal protection for another. Therefore the marine LR(interim) TV was adopted.

LR (interim) TV = $0.0004 \,\mu g/L$

Lindane [CAS No. 58-89-9] Freshwater HR Calculations

There were chronic toxicity data for *Jordanella floridae* but these were not used to derive the TV as they were greater than the aqueous solubility cut-off of 34 000 μ g/L (ie. twice reliable literature values for aqueous solubility).

The data used to derive the TV were:

150 1400	2.67 634.51		12	55	1264.99
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.0171 0.859 4.64 25.07			
HR TV (HC5 50	%)	=	0.86	=	0.9 µg/L

MR Calculations:

However, this TV did not provide adequate protection from even acute toxicity. So a MR TV was derived using acute toxicity data.

64	650	321.61	473.10	10069.76	1.5
114.08	146.19	131.94	19.5	25.71	196.15
524.63	507.17	73.5	1012.87	184.39	146.20
432.03	153.78	84.12	32	7.3	116.65
38.78	32.78	274.28	51.86	77.35	58.13
9.13	29.07	461.50	141.97	38.16	375
10	1100	3.2	904.7	460	13.38
75.63	8.62	619.67	5.02	27.26	19.17
207	330	150	9.6	130	3.08
3.9	2685	2331	6233	2545.58	2500
3200	5210.9	1773.41			

HC1 50%	=	0.671					
HC5 50%	=	4.14					
HC10 50%	=	9.58					
HC20 50%	=	24.27					
MR TV (HC5 50)%)	=	4.14 ÷25.10 (ACR)	=	0.164	~	0.2 µg/L
The other levels	of prot	ection are:					
99%		95%	90%	80%			
99% 0.0671		95% 0.165	90% 0.3817	80% 0.977			
	ded off	0.165					
0.0671	ded off	0.165			L		

Marine Fails HR MR Calculations

There were no chronic data for marine species. There were acute toxicity data for 14 species that belonged to 3 taxonomic groups (fish, crustacea and mollusca). Lindane is a pesticide and is therefore likely to have relatively low toxicity to plants and algae. Therefore, a LR (interim) TV could be derived for Lindane using an AF of 100.

Therefore only a LR (interim) TV could be derived.

LR (interim) TV	=	lowest value ÷ 100
	=	0.66 μg/L ÷ 100
	=	0.0066 µg/L
	~	0.007 μg/L

Methoxychlor [CAS No. 72-43-5] Freshwater Fails HR and MR

There were only acute toxicity data for 28 species, which belonged to 3 taxonomic groups (fish, crustacea and insecta). Methoxychlor is a pesticide therefore a LR (interim) TV does not require alga toxicity data.

Therefore only a LR (interim) TV could be derived.

LR (interim) TV	=	lowest value ÷ 100
	=	$0.5 \ \mu g/L \ \div 100$
	=	0.005 µg/L

Marine

There were no chronic toxicity data and only acute toxicity data for 21 species, which belonged to 3 taxonomic groups (fish, crustacea and mollusca).

Therefore Can derive an LR (interim) TV.

LR (interim) TV	=	lowest value ÷ 100
	=	0.42 μg/L ÷ 100
	=	0.0042 µg/L

This was rounded off to 0.004 μ g/L

Therefore LR (interim) TV = $0.004 \,\mu g/L$

Mirex [CAS No. 2385-85-5] Freshwater Fails HR and MR

There were no chronic data. There were acute toxicity data for 4 species, which belonged to 3 taxonomic groups (crustacea, insecta and hydra).

Therefore a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	40 µg/L ÷ 1000
	=	0.04 µg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR TV = $0.04 \,\mu g/L$

Toxaphene [CAS No. 8001-35-2] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

5.54 13 12 10.92 1.76 107.83	28.92 3.90 11.13 17.61 3.33 34		9.39 2 3.05 24 18 115.12	16.94 5.59 18.55 15.34 740 195	8.10 9.12 1.4 40 380	10.32 7.10 10.42 73.48 76
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1.16 2.17 3.10 4.91				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 9.80.

MR TV (HC1 50%) = $1.16 \div 9.80 = 0.0.118 = 0.1 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because toxaphene can bioaccumulate.

99% 0.118367347	95% 0.221428571	90% 0.316326531	80% 0.5
These were rounded	off to		
0.1	0.2	0.3	0.5 μg/L

Marine Fails HR and MR

There were no chronic toxicity data. There were acute toxicity data for 13 species, which belonged to 3 taxonomic groups (fish, crustacea and mollusca). As toxaphene is a pesticide a LR (interim) TV could be derived.

LR (interim) TV	=	lowest value \div (10 x ACR)
	=	$0.054 \div (10 \ge 8.65)$
	=	0.0006 μg/L

The freshwater TV was of higher quality than the TV for marine waters and would normally be adopted for marine waters. However, it did not provide adequate protection against acute toxicity for 1 species of crustacean. Therefore the marine LR(interim) TV was adopted.

LR (interim) TV = $0.0006 \,\mu g/L$

Guthion (azinphosmethyl) [CAS No. 86-50-0] Freshwater Fails HR MR calculations

The data used to derive the TV were:

3500 13.41 3.0 0.15 11.21	2107.32 4.87 2.1 0.29 899.91		695 6.32 4.01 0.46	0.36 6.83 6.22 56	3272.36 8.52 21.0 0.37	52 268.42 1.57 12.28
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.089 0.25 0.47 1.12				

Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $0.25 \div 10 = 0.025 = 0.025 \,\mu g/L$

However, this TV was too close to the acute data and therefore did not provide adequate protection. Therefore, the HC1 50% was adopted as the MR TV.

MR TV = $0.089 \div 10 = 0.0089 = 0.009 \,\mu g/L$

99%	95%	90%	80%
0.0089	0.025	0.047	0.112

These were rounded off to

0.01 0.02 0.05 0.1 µg/L

Marine Fails HR and MR

There were no chronic toxicity data. There were acute toxicity data for 5 species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore, only a LR (ECL) TV could be derived. However, the freshwater TV was of better quality and therefore was adopted for marine waters.

LR TV (HC1 50%) = $0.025 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the difference between the TV and the most sensitive acute toxicity data was not deemed to be adequate (i.e. < 3).

The other levels of protection are:

99%	95%	90%	80%
0.0089	0.025	0.047	0.112
These were	rounded off to)	
0.01	0.02	0.05	0.1 μg/L

Chlorpyrifos [CAS No. 2921-88-2] Freshwater HR Calculations

The data used to derive the TV were:

0.57	0.075		0.065	0.5		200
10	100		100	100		10
100	330					
HC1 50%	=	0.00004	369			
HC5 50%	=	0.01067	1			
HC10 50%	=	0.1139				
HC20 50%	=	1.216				
HR TV (HC5 50	0%)	=	0.0107	=	0.01 µg/	/L

99% 0.00004369		95% 0.01067		90% 0.1139		80% 1.216		
These were rou	nded off t	0						
0.00004		0.01		0.11		1.2 µg/L		
Marine HR Calculations The data used to derive the TV were:								
0.25 0.75 150 2000	0.28	0.38	1.4	0.003	2000	10000 10000		
HC1 50%	=	0.00049	1					
HC5 50%	=	0.0089						
HC10 50%	=	0.040						
HC20 50%	=	0.26						
HR TV (HC1 5	0%)	=	0.0004	19	=	0.0005 µg/L		
The other levels	s of prote	ction are:						
99%	95%	90%		80%				
0.00049	0.0089	0.04		0.26				
These were rou	These were rounded off to							
0.0005	0.009	0.04		0.3 µg/L				

600

Demeton-S [CAS No. 8065-48-3] Freshwater Fails HR and MR

There were only acute toxicity data for 4 species which belonged to 1 taxonomic group (fish).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 40 µg/L \div 1000 = 0.04 µg/L

Marine

:.

There were only toxicity data for 2 marine species, which belonged to 2 different taxonomic groups (fish and mollusca).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 320 µg/L \div 1000 = 0.32 µg/L = 0.3 µg/L

Demeton-S-methyl [CAS No. 919-86-8] Freshwater Fails HR and MR

There were only acute toxicity data for 4 species which belonged to 1 taxonomic group, mollusca.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 3700 µg/L \div 1000 = 3.7 µg/L

This was rounded to 4 μ g/L

 $LR (ECL) TV = 4 \mu g/L$

Marine

There were no toxicity data for marine species. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = 4 $\mu g/L$

Diazinon [CAS No. 333-41-5] Freshwater Fails HR MR calculations

The data used to derive the TV were:

1897.37	6160		21	250	0.46	1.1
0.65	0.2		237.96	2.88	11.97	537
1.52	3200		8000	94.12	2800	6328.77
3584.65	7935.17	1	7354.13	642.24	3186.77	1273
2461.80	8000		1628.65	171.43	224.07	2354.06
515.93	6472.57	7	2165.46	602	734.51	1492.5
83.50	36.33		0.22	7.8	50	140
79.43	37.00		16000	11000	20000	4800
2500	48		9500	11000		
HC1 50%	=	0.00058				
HC5 50%	=	0.21				
HC10 50%	=	2.74				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species for which data were available was 17.5.

MR TV (HC5 50%) = $0.21 \div 17.5 = 0.012 = 0.01 \,\mu g/L$

34.96

The other levels of protection are:

=

HC20 50%

99%	95%	90%	80%
3.31E-05	0.012	0.156	1.998
These were roun 0.00003	ded off to 0.01	0.2	2 μg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 2 species, which belonged to 1 taxonomic group (crustacea).

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of a higher quality than this and therefore it was adopted for marine waters.

LR TV (HC5 50%) = $0.01 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
3.31E-05	0.012	0.156	1.998

These were rounded off to

0.00003 0.01 0.2 2 µg/L

Dimethoate [CAS No. 60-51-5] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

4 784	30 431.1	10 500	10 100	65	4 650
8 851.26	10 200	6 546.82	2.3	22 000	7 327.59
117 716.84	42 569.97	29 853.35	5.20	2	2.6
1 074.87	237.84	2.2	3 016.15	68.95	3.10
2.9	24.5	35.8	5 358	407 524.24	7.82

The above data that would normally have been used to derive the MR TV. However, the data had a marked bi-modal distribution. Therefore, only the data that belonged to the more sensitive group (shown below) were used to derive the MR TV.

65	2.3		5.20	2	2.6	2.2
68.95	3.10		2.9	24.5	35.8	7.82
HC1 50%	=	0.96				
HC5 50%	=	1.44				
HC10 50%	=	1.86				
HC20 50%	=	2.62				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $1.44 \div 10 = 0.144 = 0.15 \ \mu g/L$

99% 0.096	95% 0.144	90% 0.186	80% 0.262
These were rounded of	f to		
0.1	0.15	0.2	0.3 µg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 4 species that belonged to 2 taxonomic groups (fish and diatoms).

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

 $LR TV = 0.15 \ \mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.096	0.144	0.186	0.262
These were rou	nded off to		
0.1	0.15	0.2	0.3 µg/L

Fenitrothion [CAS No. 122-14-5] Freshwater Fails HR MR Calculations

The acute toxicity data that would normally have been used to derive the MR TV had a marked bimodal distribution. Therefore, only the data that belonged to the more sensitive group (shown below) were used to derive the MR TV. Despite this all the acute toxicity data are in the database.

203.28	7.96	2.70	18	11.40	8.85	3
4.43	0.92	2.08	37.76	35.16	269	346.41
1.77	1.5	1.6	3.22	4.21	6.14	21
89.64	61.85	55	39	5.87	6.36	177.51
82	148	9.27	11.03	10.27	17.94	800
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.769 1.438 2.109 3.552				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (algae) was 8.

MR TV = $1.438 \div 8 = 0.179 = 0.18 \,\mu g/L$

99% 0.0960875	95% 0.17975	90% 0.263625	80% 0.444
These were rounded of	f to		
0.1	0.2	0.3	0.4 μg/L

Marine Fails HR and MR

There were no chronic toxicity data. However, there were acute toxicity data for 14 species that belonged to 3 taxonomic groups (fish, crustacea and mollusca).

As there were 3 taxonomic groups and Fenitrothion is a pesticide then toxicity data for plants was not required to derive a LR (interim) TV.

LR (interim) TV = lowest value \div 100 = 0.1 µg/L \div 100 = 0.001 µg/L

The freshwater TV was of higher quality than the marine TV and would therefore, normally be adopted for marine waters. Given the high sensitivity of the lobster (0.1 μ g/L) it was preferable to derive a low reliability TV using a high AF than to adopt the FW figure. Low algal toxicity was assumed, allowing for use of an AF of 100.

LR TV = $0.001 \,\mu g/L$

Malathion [CAS No. 121-75-5] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

7523.79 269.49 263 126.83 2 117.446 39.98 2449.40	8178.59 51.94 14173.40 76 1.75 7862.22 49.80 29933.26	14163.22 77 1376.94 64 2 37.80 126270 0.61	1420 311.61 455 1007.47 2 4.23 12445.88	4594 166.77 6000 2259.69 1 15.13 31.1	13290.14 76.96 4100 16200 1457.02 1.94 37.40
HC1 50% HC5 50% HC10 50% HC20 50%	$\begin{array}{rcl} = & 0.032 \\ = & 0.89 \\ = & 3.96 \\ = & 19.75 \end{array}$				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (fish) was 17.46.

MR TV = $0.89 \div 17.46 = 0.0510 = 0.05 \,\mu g/L$

99%	95%	90%	80%
0.00183	0.051	0.227	1.131

These were rounded off to

0.002 0.05 0.2 1.1 μg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 4 species that belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

LR TV = $0.05 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.00183	0.051	0.227	1.131

These were rounded off to

0.002 0.05 0.2 1.1 μg/L

Parathion [CAS No. 56-38-2] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

5640 262.43 1799.65 0.6 2.2 2.23 19.55 2900	2104.81 699.60 1920 1.19 3.37 1.1 7.14 15000	I	271.93 4900 18.67 5.90 7.25 15 29 4624.93	28896.18 2946.65 648.09 0.04 2.89 6.84 7079.30 20845.12	2957.19 2081.0 0.23 1.5 64.69 5.10 22313.44	305.18 1495.44 0.85 0.43 1.99 4.62 7100
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.050 0.28 0.73 2.64				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 71.2.

MR TV = $0.276 \div 71.21 = 0.0038 = 0.004 \,\mu g/L$

99%	95%	90%	80%
0.00070	0.0039	0.010	0.037

These were rounded off to

0.0007 0.004 0.01 0.04 µg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute toxicity data for 2 species — a fish and an annelid.

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

LR TV = $0.004 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.00070	0.0039	0.010	0.037

These were rounded off to

0.0007 0.004 0.01 0.04 µg/L

Profenofos [CAS No. 41198-08-7] Freshwater Fails HR and MR

There were chronic toxicity data for 2 species — a crustacean and a green alga. There were only acute toxicity data for 8 species, 6 fish and 2 crustaceans.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	21 μg/L ÷ 1000
	=	0.02 µg/L

The toxicity value of 21 was used as the crustacean toxicity data although lower had not been published.

Marine

There were no chronic toxicity data and only acute toxicity data for 2 species, both crustaceans.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	$2.4 \div 1000$
	=	0.002 µg/L

Temephos [CAS No. 3383-96-8] Freshwater Fails HR and MR

There were no chronic toxicity data and only acute data for 30 species that belonged to 3 taxonomic groups (fish, crustacea and insecta).

As there were toxicity data for 3 taxonomic groups and Temephos is a pesticide, toxicity data for alga were not required to derive a LR (interim) TV.

LR (ECL) TV = lowest value \div 100 = $8 \div 100$ = $0.08 \ \mu g/L$

NOTE: The value of 8 used to derive the TV was not the lowest. The lowest value was of 0.092 for a mosquito — one of the target organisms of the pesticide. Therefore toxicity data for that type of organism were not used to derive the TV.

However, the TV for marine waters was of higher quality than that for freshwater and therefore it was adopted for freshwaters.

LR TV = $0.05 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.00036	0.051	0.428	3.626

These were rounded off for

0.0004 0.05 0.4 3.6

Marine Fails HR MR Calculations

The data used to derive the TV were:

7500 23 4100 58000	1200 600 10 8600		5037.9 320 8.58 1500	40 130 1	11400 3000 45	1000 45 8
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.0036 0.51 4.28 36.26				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $0.51 \div 10 = 0.051 = 0.05 \,\mu\text{g/L}$

99% 0.00036	95% 0.051	90% 0.428	80% 3.626
These were rou	unded off for		
0.0004	0.05	0.4	3.6

Carbofuran [CAS No. 1563-66-2] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

908.45 604.33 193.16 1106.72 0.33 1.56 15874.51	7900 570.18 353.67 3400 2.45 4.6 20020.9	2	5100 248.66 1442 424.40 64.29 500 22308.89	268.63 4800 530 162.66 35 56 204480	1105.44 164.92 633.54 893.54 157.3 3808	1045.87 269.74 176.15 309.84 46052.16 5294
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.31 5.73 20.39 75.12				

Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 4.901.

MR TV = $5.73 \div 4.901 = 1.169 = 1.2 \,\mu g/L$

The above TV did not provide adequate protection from acute toxicity to crustaceans, therefore, the default ACR, of 10, was then used to derive the MR TV. However, this also did not reduce the MR TV so that it was below the LC_{50} for the most sensitive crustacean species.

Therefore the HC1 50% and the ACR was used to derive the MR TV.

MR TV = $0.31 \div 4.901 = 0.06325 = 0.06 \,\mu\text{g/L}$

The other levels of protection are:

99% 0.0633	95% 1.169	90% 4.160	80% 15.327
These were rour	nded off to		
0.06	1.2	4	15 µg/L

Marine Fails HR and MR

There were chronic toxicity data for only 2 species — a fish and a crustacean. There were acute data for 5 species that belonged to 2 taxonomic groups (fish and crustaceans).

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality and therefore was adopted for marine waters.

LR TV = $0.06 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.0633	1.169	4.160	15.327

These were rounded off to

0.06 1.2 4 15 μg/L

Methomyl [CAS No. 16752-77-5]

There were a number of methomyl toxicity data which did not state the type of media that was used (ie. freshwater or marine). These data were not used to derive TVs.

Freshwater Fails HR MR Calculations

The data used to derive the TV were:

1700 4050 190 60 12000	1892.51 1516.49 220 29		366.97 1983.04 37.05 1100	863.72 1013.16 886.01 870	974.68 1590.83 760 6600	750 1291.05 32 18000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	4.54 34.25 92.64 234.19				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR for this chemical.

MR TV = $34.25 \div 10 = 3.425 = 3.5 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.454	3.425	9.264	23.419

These were rounded off to

0.5 3.5 9.5 23 μg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 10 species which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality and therefore was adopted for marine waters.

LR TV = $3.5 \,\mu g/L$

The other levels of protection are:

99% 0.454	95% 3.425	90% 9.264	80% 23.419
These were rounded of	f to		
0.5	3.5	9.5	23 µg/L

S-methoprene [CAS No. 40596-69-8] Freshwater Fails HR and MR

There were only chronic toxicity data for 1 species — a fish. There were acute data for 6 species which belonged to 3 taxonomic groups (fish, crustacea and mollusca).

As there were data for 3 taxonomic groups and S-methoprene is a pesticide with a specific mode of action, toxicity data for alga were not needed to derive a LR (interim) TV.

LR (interim) TV = lowest value \div 100 = 20 \div 100 = 0.2 µg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 4 species that belonged to 2 taxonomic groups (fish and crustacea). As S-methoprene is a pesticide it was expected to have relatively low toxicity to plants and therefore a LR (interim) TV could be derived without algae.

LR (interim) TV	=	lowest value ÷ 100
	=	2000 μg/L ÷ 100
	=	20 µg/L

Deltamethrin [CAS No. 52918-63-5] Freshwater Fails HR and MR

There were no chronic toxicity data. There were only acute toxicity data for 7 species, 3 fish, 1 crustacean, 1 insect and 2 molluscs. However, some of these exceeded two times reliable literature values for the aqueous solubility (ie. 8 μ g/L). The remaining acute toxicity data consisted of 1 fish, 1 crustacean, and 1 insect.

Therefore only an LR (Interim) TV could be derived.

LR (Interim) TV TV = lowest value \div 100 = 0.01 µg/L \div 100 = 0.0001 µg/L

NOTE: the lowest value was not used as it was much lower than other data for the same species, and was considered anomalous. Therefore the next lowest value was used.

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted.

Therefore LR (ECL) TV = $0.0001 \,\mu g/L$

Esfenvalerate [CAS No. Freshwater Fails HR and MR

There were insufficient chronic toxicity data to derive a HR TV and there were only acute data for 6 species that belonged to 3 taxonomic groups (fish, crustacea and amphibia).

As there were data for 3 taxonomic groups and Esfenvalerate is a pesticide, toxicity data for alga was not needed to derive a LR (interim) TV.

There were sufficient multiple species toxicity data obtained from mesocosm studies. Therefore, a MS HR TV could be derived.

HR TV = lowest value \div 10 = 0.01 µg/L \div 10 = 0.001 µg/L

Marine Fails HR and MR

There were no data for marine organisms. Therefore the freshwater MS HR TV was adopted for marine waters.

HR TV = $0.001 \,\mu\text{g/L}$

Diquat [CAS No. 85-00-7] Freshwater Fails HR MR calculations

The data used to derive the TV were:

89250.57	41402.96	84000	1895799.57	289000
79241.81	10297.72	9055.07	10805.87	56635.98
28500	43899.22	28557.96	16800	20600
54947.91	2051.55	13800	3000	19
19	46600	3400	73	19
42	65			

HC1 50%	=	0.12
HC5 50%	=	13.76
HC10 50%	=	106.10
HC20 50%	=	818.8

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $13.76 \div 10 = 1.376 = 1.4 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.012	1.376	10.61	81.882

These were rounded off to

0.01 1.4 10 80 µg/L

Marine Fails HR and MR

There were no data for marine organisms. Therefore the freshwater LR (interim) TV was adopted for marine waters.

LR TV	=	1.4 µg/L
-------	---	----------

The other levels of protection are:

99%	95%	90%	80%
0.012	1.376	10.61	81.882

These were rounded off to

0.01	1.4	10	80 µg/L
------	-----	----	---------

Paraquat [CAS No. 1910-42-5] Freshwater Fails HR and MR

There were no chronic toxicity data. There were acute toxicity for 21 species, which belonged to 3 taxonomic groups (fish, crustacea and amphibia). As Paraquat is a herbicide it must have toxicity data for alga in order to derive an LR (Interim) TV.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	500 μg/L ÷ 1000
	=	0.5 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $0.5 \,\mu g/L$

MCPA [CAS No. 94-74-6] Freshwater Fails HR and MR

There were only acute toxicity data for 8 species, 6 fish, 1 crustacean and 1 insect.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	1440 μg/L ÷ 1000
	=	1.4 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted.

Therefore LR (ECL) TV = $1.4 \,\mu g/L$

2,4-D [CAS No. 94-75-7] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

342484.29 7000 3100 70913.84 3100000 63815.66 1850	(160000 3800 163033.06 4800 6170.90 17614 5538.93	$1296382. \\26061.06 \\43909.00 \\2780000 \\45000 \\144100 \\6602.89$	105788.3	83494.73 92101.27 64000 2000000 236000 4900 224588.51
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	1392 2911 4572 8454			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (fish) was 10.22.

MR TV = $2911 \div 10.22 = 284.8 = 285 \,\mu g/L$

The other levels of protection are:

99% 136.2035225	95% 284.8336595	90% 447.3581213	80% 827.2015656
These were rounded of	f to		
140	280	450	830 µg/L

Marine Fails HR and MR

There were no chronic toxicity data and only acute data for 4 species that belonged to 3 taxonomic groups (fish, crustacea and mollusca).

Despite being a herbicide 2,4-D seemed to have very low toxicity to alga. Therefore because there were 3 taxonomic groups a LR (interim) TV could be derived.

LR (interim) TV	=	lowest value ÷ 100
	=	$1500 \div 100$
	=	15 μg/L

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

LR TV = $2911 \div 10.22 = 284.8 = 285 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
136.2035225	284.8336595	447.3581213	827.2015656

These were rounded off to

140	280	450	830 μg/L
140	200	450	050 µg/L

2,4,5-T [CAS No. Freshwater Fails HR MR Calculations

The data used to derive the TV were:

1: 13000	2: 5803	3.39	3: 105028.63	4: 51672.72	5: 6048.14	6: 2900
7: 34134.33	8: 3065	1.88	9: 15062.94	10: 23410.03	11: 20652.34	12:600
13: 1762.10	14: 194	00	15: 1000	16: 32823.80	17:9400	18:8300
19: 120	20: 880	00	21: 5000	22: 2700	23: 118357.07	
24: 112904.87	25: 329	7.56				
HC1 50%	=	31.92				
HC5 50%	=	359.14				
HC10 50%	=	1020				
HC20 50%	=	2917				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR for this chemical.

MR TV = $359.14 \div 10 = 35.914 = 36 \,\mu\text{g/L}$

99% 3.192	95% 35.914	90% 102	80% 291.7
These were rounded of	f to		
3	36	100	290 µg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore the freshwater MR TV was adopted for marine waters.

LR TV = $36 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
3.192	35.914	102	291.7

These were rounded off to

3	36	100	290 µg/L

Bensulfuron [CAS No. Fresh and Marinewater

There were no toxicity data. So no TV was derived.

Metsulfuron Fresh and Marinewater

There were no toxicity data. So no TV was derived.

Molinate [CAS No. 2212-67-1] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

20510 9696.97 600 9263.91	1114.09 3535.39 673.16 25533.3	9	17980.36 13000 5848.08 461.61	34000 400 2400 34000	36879.34 430 5600 19798.99	4701.78 180 8698.11
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	2.82 74.67 306.1 1254				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all freshwater species for which data were available was 21.82.

MR TV = $74.67 \div 21.82 = 3.42 = 3.4 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.129	3.422	14.028	57.470

These were rounded off to

0.1 3.4 14 57 μg/L

Marine Fails HR and MR

There were chronic data for 1 species — a crustacean. There were acute toxicity data for 2 species — a fish and a mollusc.

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality and therefore was adopted for marine waters.

LR TV = 74.67 \div 21.82 = 3.42 = 3.4 μ g/L

The other levels of protection are:

99%	95%	90%	80%
0.129	3.422	14.028	57.470

These were rounded off to

0.1 3.4 14 57 μg/L

Thiobencarb [CAS No. 28249-77-6] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

1500 2184.24 1990 2000 5000	890 1598.08 1658.8 1244.98 3523.25	3	1510 2540 510 5800 23.86	1016.40 709.36 1200 15000	1164 1138.06 896.28 67069.31	2450 760 3470 5200
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	91.54 270.0 438.4 737.2				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species (crustaceans) was 95.

MR TV = $270 \div 95 = 2.84 = 2.8 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.963578947	2.842105263	4.614736842	7.76
T	1 1 00.		

These were rounded off to

1	2.8	4.6	8 μg/L
---	-----	-----	--------

Marine

There were chronic toxicity data for 1 crustacean. However, there were acute data for 1 species of fish, 2 crustaceans and 1 diatom. Therefore only an interim TV can be derived.

Interim TV	=	lowest value ÷ 20
	=	$3.2 \div 20$
	=	0.16 µg/L

An AF of 20 was used as the lowest toxicity value was chronic.

However, the freshwater TV was of higher quality than this and was therefore adopted for marine waters.

LR TV = $270 \div 95 = 2.84 = 2.8 \,\mu\text{g/L}$

The other levels of protection are:

99% 0.963578947	95% 2.842105263	90% 4.614736842	80% 7.76
These were rounded of	f to		
1	2.8	4.6	7.8 µg/L

Thiram [CAS No. 137-26-8] Freshwater Fails HR MR calculations

The data used to derive the TV were:

3700 7500 210 5500	277.56 0.74 283.14 1000		9.2 254.95 4300 16.86	34.64 7500 103.17	7.04 270 173.21
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.0777 1.88 7.52 31.6			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV (HC1 50%) = $0.0777 \div 10 = 0.00777 = 0.01 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the TV did not provide adequate protection from acute toxicity to fish.

The other levels of protection are:

99% 0.00777	95% 0.188	90% 0.752	80% 3.16
These were round	ed off to		
0.01	0.2	0.8	3.0 µg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore the freshwater TV was adopted for marine waters.

LR TV = $0.01 \,\mu g/L$

The other levels of protection are:

99% 0.00777	95% 0.188	90% 0.752	80% 3.16
These were round	ed off to		
0.01	0.2	0.8	3.2 µg/L

Amitrole [CAS No. 61-82-5] Freshwater Fails HR and MR

There were no chronic toxicity data. However, there were acute toxicity data for 7species, which belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 22,100 µg/L \div 1000 = 22.1 µg/L

This was rounded off to 22 μ g/L.

Therefore LR (ECL) TV = $22 \mu g/L$

Marine

There were no toxicity for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $22 \,\mu g/L$

Atrazine [CAS No. 1912-24-9] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

16733.20	91258.05	33778.26	258000	18900	12862.46
33603.16	55497.75	14074.80	63245.55	15000	41324.10
5253.57	5328.16	18300	19302.85	35600	5700
14900	1000	720	48.06	287.21	

This data contained one marked outlier — the value of 258 000. This value was removed and the TV recalculated below.

HC1 50%	=	14.29
HC5 50%	=	254.26
HC10 50%	=	878.41
HC20 50%	=	3035

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. The ACR for all species was 20.21.

MR TV = $254.26 \div 20.21 = 12.58 = 13 \,\mu g/L$

99% 0.707	95% 12.581	90% 43.464	80% 150.173
These were rounded of	f to		
0.7	13	45	150 µg/L

Marine Fails HR and MR

There were chronic toxicity data for 1 species, a crustacean. There were only acute data for 6 species that belonged to 3 taxonomic groups (fish and crustacea). Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div (100 x ACR) = 50 \div (100 x 20.22) = 0.0247 \approx 0.025 µg/L

However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

LR TV = $254.26 \div 20.21 = 12.58 = 13 \,\mu\text{g/L}$

The other levels of protection are:

99% 0.707075705	95% 12.58090054	90% 43.46412667	80% 150.1731816
These were rounded of	f to		
0.7	13	45	150 µg/L

Hexazinone [CAS No. 51235-04-2] Freshwater Fails HR and MR

There were no chronic toxicity data. There were only acute toxicity data for 8 species all of which were fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	75000 μg/L ÷ 1000
	=	75 μg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine species.

Therefore LR (ECL) TV = $75 \,\mu g/L$

Simazine Freshwater Fails HR MR Calculations

A number of the acute toxicity data for simazine were greater than the maximum acceptable solubility of 7000 μ g/L (ie. twice reliable literature aqueous solubility values). These data were removed and those used to derive the TV are presented below.

3535.53 3100	3674 3440		331.66 1048.81	6600 3580	90 1900	3420.51 2.24
UC1 509/	=	1.99				
HC1 50%	—	1.99				
HC5 50%	=	32.36				
HC10 50%	=	107.1				
HC20 50%	=	354.5				

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $32.36 \div 10 = 3.236 = 3.2 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.2	3.236	10.712	35.453

These were rounded off to

0.2 3.2 11 35 μg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore the freshwater TV was adopted for marine waters.

LR TV = $3.2 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
0.2	3.236	10.712	35.453

These were rounded off to

0.2 3.2 11 35 μg/L

Diuron [CAS No. 330-54-1] Freshwater Fails HR and MR

There were only chronic data for 1 species — a fish. There were only acute toxicity data for 23 species belonging to 3 different taxonomic groups (fish, crustacea, insecta).

Therefore only a LR (ECL) TV could be derived. An AF of 200 was used because the lowest value was chronic.

LR (ECL) TV = lowest value $\div 200$ = 33.4 µg/L $\div 200$ = 0.15 \approx 0.2 µg/L

Marine

There were no chronic data but there were acute toxicity data for 2 species, which belonged to 2 taxonomic groups (fish, mollusca).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 1800 µg/L \div 1000 = 1.8 µg/L

Tebuthiuron [CAS No. 34014-18-1] Freshwater HR Calculations

The data used to derive the TV were:

26000	9300		21800	21.52	56	310
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	0.151 2.20 18.79 160.6				
HR TV =	2.20	=	$2.2 \ \mu g/L$			
The other levels	of prot	ection are:				
99% 0.0151		95% 2.2	90% 18.79		80% 160.6	
These were rour	nded off	to				
0.02		2.2	20		160 µg/L	

Marine Fails HR and MR

There was a chronic datum for 1 species — a diatom. There was an acute datum for 1 species — a crustacean.

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

 $LR TV = 2.20 = 2.2 \,\mu g/L$

99% 0.0151	95% 2.2	90% 18.79	80% 160.6
These were rounded of	f to		
0.02	2.2	20	160 µg/L

Acrolein [CAS No. 107-02-8] Freshwater Fails HR and MR

There were only acute toxicity data for 7 species belonging to three taxonomic groups (fish, crustacea and amphibia) none of which included alga.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest acute value \div 1000 = 7 µg/L \div 1000 = 0.007 µg/L

This was rounded to 0.01 μ g/L

LR (ECL) TV = $0.01 \mu g/L$

Marine

There were only marine toxicity data for 4 species that belonged to 2 taxonomic groups (fish and crustacea).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest acute value ÷ 1000
	=	100 μg/L ÷ 1000
	=	0.1 µg/L

Bromacil [CAS No. 314-40-9] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species, a fish. There were no chronic toxicity data.

Therefore only a	LR (ECI	.) TV could be derived.
LR (ECL) TV	=	lowest value ÷ 1000
	=	182000 μg/L ÷ 1000
	=	182 µg/L

Which was rounded off to 180 $\mu g/L$

LR (ECL) TV = $180 \,\mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = 180 μ g/L

Glyphosate [CAS No. 1071-83-6] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

3 321 100 3000	149.87 328.88 51 029.40	91 959.6 116 259.46 34 945.15	130 000 26 700 641 232.41	184 721.21 106 124.67 77 722.09	97 918.33 97 000 116 017.81
HC1 50%	=	3726			
HC5 50%	=	12210			
HC10 50%	=	20781			
HC20 50%	=	36760			

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR for this chemical.

MR TV (HC1 50%) = $3726 \div 10 = 372.6 = 370 \,\mu\text{g/L}$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because the HC5 50% TV was too close to the acute toxicity data (i.e. it did not provide adequate protection).

The other levels of protection are:

99% 372.6	95% 1221	90% 2078.1	80% 3676
These were rounded off	to		
370	1200	2000	3600 µg/L

Marine Fails HR and MR

There were no toxicity data for marine organisms. Therefore, the freshwater TV was adopted for marine waters.

LR TV (HC1 50%) = $370 \,\mu g/L$

The other levels of protection are:

99%	95%	90%	80%
372.6	1221	2078.1	3676
These were rounded of	f to		

370	1200	2000	3600 μg/L
-----	------	------	-----------

Imazethapyr [CAS No. Freshwater Fails HR and MR

There were only acute toxicity data for 3 species, all of which were a fish

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 240000 µg/L \div 1000 = 240 µg/L

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = 240 μ g/L

Ioxynil [CAS No. 1689-83-4] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 350 µg/L \div 1000 = 0.35 µg/L

This was rounded to 0.4 $\mu g/L$

LR (ECL) TV = $0.4 \,\mu g/L$

Marine

There were no toxicity data for marine species. Therefore, the freshwater LR (ECL) TV was adopted for marine waters.

LR (ECL) TV = $0.4 \,\mu g/L$

Metolachlor [CAS No. 51218-45-2] Freshwater Fails HR and MR

There were acute toxicity data for 2 species, a fish and a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	20.6 µg/L ÷ 1000
	=	0.0206 µg/L

This was rounded down to 0.02 μ g/L

Therefore LR (ECL) TV = $0.02 \,\mu g/L$

Marine

There were no toxicity data for marine species. Therefore the freshwater LR (ECL) TV was adopted for marine waters.

Therefore LR (ECL) TV = $0.02 \,\mu g/L$

Trifluralin [CAS No. 1582-09-8] Freshwater Fails HR MR Calculations

The data used to derive the TV were:

250	261.45	812.40	3633.18	270	577.55
47.48	75	41.42	105	600	60
2000	60	250	193	387.30	80
50	1734.12	3509.99	50000	210.71	15947.75
636.40	1000	3385.16	35000	30000	30000
8000	130.38				

NOTE: The above data contained values that were greater than the twice the aqueous solubility. These data were removed and the TV recalculated below.

250 47.48 2000 50 3385.16	261.45 75 60 1734.12 8000	2	812.40 41.42 250 3509.99 130.38	1100 105 193 210.71	270 600 387.3 636.4	577.55 60 80 1000
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	26.22 44.13 60.69 93.60				

NOTE: This chemical has a log Kow value greater than 4, therefore it has the potential to bioaccumulate. To account for this the HC1 50% value was used to calculate the TV. Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR for this chemical.

MR TV (HC1 50%) = $26.22 \div 10 = 2.622 = 2.6 \,\mu g/L$

The HC1 50% was adopted for slight to moderately modified ecosystem protection because trifluralin can bioaccumulate and also because the 95% figure is too close to the acute toxicity figures.

99% 2.622	95% 4.413	90% 6.069	80% 9.36
These were rounded of	f to		
2.6	4.4	6	9 μg/L

Marine Fails HR and MR

There were no chronic toxicity data but there were acute toxicity data for 1 species — a crustacean.

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality than this and therefore was adopted for marine waters.

LR TV (HC1 50%) = $2.6 \,\mu g/L$

The other levels of protection are:

99% 2.622	95% 4.413	90% 6.069	80% 9.36
These were rounded of	f to		
3	4.4	6	9 μg/L

LAS (normalised NOECs) Freshwater HR Calculations

There is no CAS No. as the term LAS represents a group of chemicals.

The data used to derive the TV for LAS are not in the database. Therefore, the data from the database should not be used to derive any site-specific TVs or to recalculate TVs as more data becomes available. The data used to derive the TV were obtained from the MHSPE (1994) document. These data were all normalised to an alkyl chain length of 11.6 in order for the toxicity data to be consistent. This consisted of chronic toxicity data for 5 species of algae, 2 crustaceans, 1 insect and 5 fish. Therefore the statistical distribution method could be used.

12000 3200 3200	3500 1400 340		800 2800 250	15000 3400	7700 2300	3800 870
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	64.05 278.0 525.3 1006				
HR TV =	278	=	280 µg/L			

99%	95%	90%	80%
64.05	278	525.3	1006
These were rounded of	ff to		

<pre>/ -</pre>	• • • •		1000 17
65	280	520	1000 µg/L

Marine

The data used to derive the TV for LAS are not in the database. Therefore, the data from the database should not be used to derive any site-specific TVs or to recalculate TVs as more data becomes available. The data used to derive the TV were obtained from the MHSPE (1994) document. These data were all normalised to an alkyl chain length of 11.6 in order for the toxicity data to be consistent.

These data consisted of chronic values for 1 crustacean, 2 molluscs and 1 fish. Therefore only an LR (ECL) TV could be derived. However, the freshwater MR TV was of higher quality and could therefore be adopted as an LR TV. But, the freshwater MR TV value of 280 was much greater than the available marine data. Therefore a marine LR (ECL) TV was calculated. An assessment factor of 200 was used as the lowest toxicity value was chronic.

LR (ECL) TV	=	$25 \div 200$
	=	0.125
	=	0.1 μg/L

The other levels of protection could not be calculated as the TV was derived using the AF method.

AES (normalised NOECs) Freshwater HR Calculations

There is no CAS No. as the term AES represents a group of chemicals.

The data used to derive the TV for LAS are not in the database. Therefore, the data from the database should not be used to derive any site-specific TVs or to recalculate TVs as more data becomes available. The data used to derive the TV were obtained from the MHSPE (1994) document. These data were all normalised to an alkyl chain length of 17 in order for the toxicity data to be consistent. The data consisted of chronic values for 5 species that belonged to 4 taxonomic groups (green alga, fish, protozoa and fish).

2400	2400		800	1600	1200
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	335.8 643.6 851.9 1129.1			
HR TV =	643.6	=	645 μg/L		

99% 335.8	95% 643.6	90% 851.9	80% 1129
These were rounded of	f to		
340	650	850	1100 µg/L

Marine Fails HR and MR

There were no data for marine organisms. Therefore the freshwater TV was adopted for marine waters.

 $LR TV = 643.6 = 645 \,\mu g/L$

The other levels of protection are:

99% 335.8	95% 643.6	90% 851.9	80% 1129
These were rounded of	f to		
340	650	850	1100 µg/L

AE (normalised NOECs) Freshwater HR Calculations

There is no CAS No. as the term AE represents a group of chemicals.

The data used to derive the TV for LAS are not in the database. Therefore, the data from the database should not be used to derive any site-specific TVs or to recalculate TVs as more data becomes available. The data used to derive the TV were obtained from the MHSPE (1994) document. These data were all normalised to an alkyl chain length of 13.3 and so the number of alcohol ethoxylate groups was 8.2 in order for the toxicity data to be consistent. There were chronic data for 13 species that belonged to 7 taxonomic groups (fish, crustacea, blue alga, diatoms, green alga, protozoa, and worms).

1900 200 720	930 1300 170		8700 860 170	740 590	1300 1500
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	51.98 142.69 224.2 363.9			
HR TV =	142.69	=	143 µg/L		

99% 51.98	95% 142.69	90% 224.2	80% 363.9
These were rounded of	f to		
50	140	220	360 µg/L

Marine Fails HR and MR

There were chronic toxicity data for 4 species that belonged to 3 taxonomic groups (fish,. crustacea and mollusca).

Therefore only a LR (ECL) TV could be derived. However, the freshwater TV was of higher quality and was therefore adopted for marine waters.

LR TV = $142.69 = 143 \,\mu g/L$

The other levels of protection are:

99% 51.98	95% 142.69	90% 224.2	80% 363.9
These were rounded off	to		
50	140	220	360 µg/L

BP1100X Freshwater Fails HR and MR

There were no toxicity data for freshwater species. Therefore the marine LR (ECL) TV was adopted for freshwaters.

Therefore LR (ECL) TV = $25 \,\mu g/L$

Marine

There were only acute toxicity data for 6 species, 1 fish, 3 crustaceans and 2 molluscs.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	25 000 μg/L ÷ 1000
	=	25 μg/L

Corexit 7664 [CAS No. 12774-30-0] Freshwater Fails HR and MR

There were only acute toxicity data for 1 species, a fish.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value ÷ 1000
	=	15800 μg/L ÷ 1000
	=	15.8 μg/L

This was rounded off to 16 μ g/L.

Therefore LR (ECL) TV = $16 \,\mu g/L$

Marine

There were only acute toxicity data for 6 species, which belong to 3 taxonomic groups (fish, crustacea and mollusca).

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV = lowest value \div 1000 = 1000 µg/L \div 1000 = 1 µg/L

Corexit 8667 [CAS No. 95312-90-6] Freshwater Fails HR and MR

There were no toxicity data for freshwater species. Therefore the marine LR (ECL) TV was adopted for freshwater species.

Therefore LR (ECL) TV = $1200 \,\mu g/L$

Marine

There were only acute toxicity data for 1 species, a crustacean.

Therefore only a LR (ECL) TV could be derived.

LR (ECL) TV	=	lowest value \div 1000
	=	1225000 μg/L ÷ 1000
	=	1225 μg/L

This was rounded down 1200 $\mu g/L$

Therefore LR (ECL) TV = $1200 \ \mu g/L$

Corexit 9527 [CAS No. 60617-06-3] Freshwater Fails HR and MR

There was a toxicity datum for 1 species — a fish.

Therefore only a LR (ECL) TV could be derived. However, the marine water TV was of higher quality than this and therefore it was adopted for freshwaters.

LR TV = $11038 \div 10 = 1103.8 = 1100 \ \mu g/L$

99% 233.3	95% 1103.8	90% 2177.3	80% 4403.7
These were rounded of	f to		
230	1100	2200	4400 μg/L

Marine Fails HR MR Calculations

There were no chronic data. There were acute toxicity data for 11 species that belonged to 4 taxonomic groups (fish, crustacea, mollusca and brown alga).

The data used to derive the TV were:

34734.97 6023.38 100000	100000 733212 200000	11	169715.20 78094.73	162000 965489.38
HC1 50% HC5 50% HC10 50% HC20 50%	= = =	2333 11038 21773 44037		

NOTE: Because this TV was derived using acute toxicity data it is a MR TV and must be divided by either a default AF of 10 or an ACR. There was no ACR.

MR TV = $11038 \div 10 = 1103.8 = 1100 \,\mu\text{g/L}$

The other levels of protection are:

99%	95%	90%	80%
233.3	1103.8	2177.3	4403.7
These were rounded of	f to		

230 1100 2200 4400 µ

Corexit 9500 Fresh and Marine waters combined Fails HR Meets MR

There were no chronic toxicity data. There were acute toxicity data for 15 species that belonged to 5 taxonomic groups (fish, crustacea, mollusca, diatom and brown alga).

However, the data for this chemical arrived extremely late in the derivation process and so they could not be screened (i.e. have their quality assessed). Therefore, even though a MR TV could have been calculated (and this method was used) the TV was classed as a Low reliability LR TV because of the greater uncertainty associated with the toxicity data.

Normally toxicity data based on 24 hour exposure were not used to derive TVs but in this case it was included.

HC1 50%	=	140			
HC5 50%	=	1450			
HC10 50%	=	3930			
HC20 50%	=	10720			
LR TV =	1450 ÷	- 10	=	140 µ	g/L
The other level	ls of protec	ction are:			
99%	95	%	9	0%	80%
14	14	45		393	1072
These were rou	unded off t	0			
15	15	50	4	400	1100 µg/L

References

- ANZECC & ARMCANZ 2000. *Australian and New Zealand guidelines for fresh and marine water quality*. National Water Quality Management Strategy Paper No 4, Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canberra.
- AQUIRE (Aquatic Toxicity Information Retrieval Database) 1994. AQUIRE standard operating procedures. USEPA, Washington, DC.
- Florence TM, Stauber JL & Ahsanullah M 1994. Toxicity of nickel ores to marine organisms. *Science of the Total Environment* 148, 139–155.
- Hawley JR 1977. *The use, characteristics and toxicity of mine-mill reagents in the Province of Ontario*. Ministry of the Environment, Ontario. (Cited in NICNAS 1995)
- Mance GA, O'Donnell AR, Campbell JA & Gunn AM 1988. Proposed environmental quality standards for list II substances in water: Inorganic tin. ESSL TR 254. Water Research Centre, Medmenham, UK.
- MHSPE 1994. *Environmental quality objectives in the Netherlands*. Ministry for Housing, Spatial Planning and Environment, The Hague, The Netherlands.
- USEPA 1980. Ambient water quality criteria for hexachlorobutadiene. Criteria and Standards Division, US Environmental Protection Agency, Washington DC. EPA-440/5-80-053.
- USEPA 1986. *Quality criteria for water*. US Department of Commerce, National Technical Information Service, US Environmental Protection Agency, Springfield, Virginia. PB87-226759, EPA 440/5 86-001.